
Hands-On Guide
to AgileOps

A Guide to Implementing Agile, DevOps,
and SRE for Cloud Operations
—
Navin Sabharwal
Raminder Rathore
Udita Agrawal

Hands-On Guide to
AgileOps

A Guide to Implementing
Agile, DevOps, and SRE

for Cloud Operations

Navin Sabharwal
Raminder Rathore
Udita Agrawal

Hands-On Guide to AgileOps: A Guide to Implementing Agile, DevOps, and SRE for
Cloud Operations

ISBN-13 (pbk): 978-1-4842-7504-7		 ISBN-13 (electronic): 978-1-4842-7505-4
https://doi.org/10.1007/978-1-4842-7505-4

Copyright © 2022 by Navin Sabharwal, Raminder Rathore, and Udita Agrawal

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aditee Mirashi
Development Editor: James Markham
Coordinating Editor: Mark Powers
Copyeditor: Kimberly Wimpsett

Cover designed by eStudioCalamar

Cover image by Pixabay (www.pixabay.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole
member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc
is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484275047. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Navin Sabharwal
New Delhi, Delhi, India

Raminder Rathore
Ontario, Canada

Udita Agrawal
Ghaziabad, India

https://doi.org/10.1007/978-1-4842-7505-4

iii

About the Authors��� ix

About the Technical Reviewer�� xi

Acknowledgments�� xiii

Preface���xv

Table of Contents

Chapter 1: �Introduction��� 1

Agile History: The Starting Point�� 4

Evolving Software Teams: Drifting to New Ways of Working�� 5

Bridging the Dev and Ops Gap��� 7

DevOps: Complementing Agile��� 7

Agility in Infrastructure Operations: Need of the Hour��� 8

The Agile Manifesto: Simple Guiding Principles��� 9

Summary��� 10

Chapter 2: �Traditional Infrastructure Operations��� 11

ITSM Approach��� 12

Service Strategy��� 15

Service Design��� 16

Service Transition��� 20

Service Operation��� 22

Continual Service Improvement��� 24

Drawbacks with Traditional InfraOps Teams�� 26

Need for Change�� 26

Summary��� 28

iv

Chapter 3: �Introduction to Agile and DevOps�� 29

When to Adopt Agile?��� 29

Agile Principles�� 30

Agile Benefits��� 34

Scaling Agile with DevOps��� 35

When to Adopt DevOps?��� 35

DevOps in the Product Lifecycle�� 37

Summary��� 39

Chapter 4: �Factors Leading to Agile Operations�� 41

The Shift Toward Agile��� 43

Benefits That Come with Agility��� 44

Cloud Computing�� 45

Infrastructure as a Service��� 46

Platform as a Service��� 47

Software as a Service�� 47

Microservice Architecture�� 51

Deployment Patterns and Automation��� 53

Blue-Green Deployments�� 54

Rolling Updates�� 54

Canary Deployments�� 55

Shift-Left Testing�� 56

Static Code Analysis��� 58

Infrastructure Testing��� 59

Smoke Testing�� 60

Functional and Performance Testing�� 61

Security Testing�� 62

User Acceptance Testing�� 63

Chaos Testing��� 64

A/B Testing�� 64

Changes in Architecture Impacting Operations�� 65

Summary��� 67

Table of Contents

v

Chapter 5: �Introduction to Agile Methods�� 69

Scrum�� 69

Adopting Scrum in IT Ops��� 70

Getting Started with Scrum�� 71

Scrum Roles��� 73

Work Items��� 74

Backlogs��� 74

Scrum Sprints��� 74

Sprint Ceremonies�� 75

Information Radiators��� 76

Best Practices in Scrum��� 83

Summary of Scrum�� 84

Kanban��� 84

Kanban Roles�� 86

Kanban Ceremonies��� 88

Kanban Boards��� 88

Kanban Metrics�� 89

Getting Started with Kanban�� 90

Best Practices in Kanban�� 103

Summary of Kanban��� 104

Scrumban��� 104

Scrumban Roles��� 106

Scrumban Ceremonies��� 106

Getting Started with Scrumban�� 106

Best Practices in Scrumban��� 109

Summary of Scrumban��� 110

Summary��� 110

Table of Contents

vi

Chapter 6: �Introduction to Agile Frameworks��� 113

Agile ITSM�� 113

IT4IT��� 115

Lean IT��� 119

Scaled Agile Framework® (SAFe®)��� 124

Spotify�� 126

LeSS��� 133

Nexus��� 137

Disciplined Agile Delivery (DAD)��� 139

Site Reliability Engineering�� 143

Balance Between Dev and Ops Work��� 153

Summary��� 155

Chapter 7: �Using Agile for Infrastructure Operations�� 157

The Starting Point�� 158

Adopting the Right Agile Framework and Methodology��� 159

Identifying the Agile Methodology�� 161

Identifying Tools for Implementation�� 162

Identifying the Need for Extended Integration�� 163

Upgrading Teams on Using the Agile Approach�� 163

Redefining Team Roles and Responsibilities�� 164

Nurturing the Culture of “Pulling Work”��� 164

Baselining the Initial Cycle Time and Related Metrics�� 164

Identifying Candidates for Self-Servicing��� 166

Creating Team Dashboards for Visibility��� 166

Piloting and Extending the Approach�� 166

Continuously Measuring Metrics and Replanning�� 167

Summarizing the Transformation Plan��� 167

Phase 1: Pilot and Accelerate��� 168

Phase 2: Expand and Optimize��� 170

Phase 3: Sustainment��� 171

Summary��� 174

Table of Contents

vii

Chapter 8: �Moving to Agile with Infrastructure as Code��������������������������������������� 177

Getting Started with Infrastructure as Code Using Scrum��� 180

Estimating Stories�� 183

Defining Acceptance Criteria��� 186

An Infrastructure Build Example�� 187

Tools Pipeline��� 188

Infrastructure as Code Example��� 189

Integrating IaC with Development Pipelines�� 192

Extending the IaC Example�� 193

Key Agile Practices While Adopting IaC Using Scrum�� 196

Summary��� 196

Chapter 9: �Success Path�� 199

Case Study Implementing AgileOps��� 200

New Operating Model for Alpha��� 203

Outcomes��� 204

Summary��� 204

Chapter 10: �Learnings and Ways Forward��� 205

Our Learnings�� 205

Emerging Trends to Focus�� 206

Next Steps�� 208

Conclusion��� 209

Index�� 211

Table of Contents

ix

About the Authors

Navin Sabharwal has more than 23 years of industry

experience. He is a thought leader and head of strategy

and development in the areas of agile, cloud computing,

DevSecOps, AIOps, FinOps, artificial intelligence, and SaaS

product engineering. He holds seven patents in the areas

of AI and machine learning. He has authored 15+ books on

cloud capacity management, observability, DevOps, cloud

automation, containerization, Google AutoML, BERT, and

NLP. He can be reached at Navinsabharwal@gmail.com and

www.linkedin.com/in/navinsabharwal. 

Raminder Rathore is a DevOps practitioner with two

decades of IT experience. Currently working as the practice

head at HCL Technologies, she helps customers drive

transformative programs on agility and resiliency. She has

been successful in enabling and completing enterprise-

wide programs on DevOps and agile, including defining

organization roadmaps on transformation, process

optimization, and automation tools rationalization

(including open source and COTS); planning and

architecting CI/CD pipelines; service catalog designing

for cloud platforms; building accelerators for end-to-end

product traceability; and coaching teams on adopting agile ways of working. She can

be reached at raminder.rathore@gmail.com and https://www.linkedin.com/in/

raminder-devops-practitioner/. 

https://www.linkedin.com/in/navinsabharwal
https://www.linkedin.com/in/raminder-devops-practitioner/
https://www.linkedin.com/in/raminder-devops-practitioner/

x

Udita Agrawal is a DevOps practitioner with more than 17

years of IT experience. She has diverse experience in agile

and DevOps implementation in development, testing, data

analytics, and infrastructure operations. Currently working

as a senior DevOps consultant at HCL Technologies, she

has been working with different customers in enabling and

improving practices and processes in agile and DevOps. She

also has an interest in delivering training to teams in the

same area. She can be reached at udita.agrawal@gmail.

com and www.linkedin.com/in/udita-agrawal-DevOps-

Consultant.  

About the Authors

https://www.linkedin.com/in/udita-agrawal-DevOps-Consultant
https://www.linkedin.com/in/udita-agrawal-DevOps-Consultant

xi

About the Technical Reviewer

Afzaal Ahmad Zeeshan is a developer advocate at Adyen and likes .NET Core and

Node.js for regular, everyday development. He is an expert in cloud, mobile, and API

development. Afzaal has experience with the Azure platform and enjoys building

cross-platform libraries/software with .NET Core. He has written DevSecOps for .NET

Core for Apress, as well as many online technical articles.

Afzaal is an Alibaba Cloud MVP; twice he has been awarded Microsoft MVP status

for his thought leadership in software development, five times CodeProject MVP status

for technical writing and mentoring, and four times C# Corner MVP status in the same

field. Afzaal is an active open source contributor on GitHub and GitLab. You can find

him as afzaal-ahmad-zeeshan and @afzaalvirgoboy.

xiii

To my family, Shweta and Soumil, for always being there by my side and sacrificing their

time for my intellectual and spiritual pursuits. This and other accomplishments of my

life wouldn’t have been possible without your love and support.

To my mom and my sister: for their love and support as always; without your

blessings, nothing is possible.

To my co-authors, Raminder and Udita: thank you for the hard work and quick

turnarounds to deliver this book. It was an enriching experience, and I am looking

forward to working with you again soon.

To my team at HCL, who have been a source of inspiration with their hard work,

ever-engaging technical conversations, and technical depth: Raminder, Udita, Piyush,

Amit, Sarvesh, Subramani, Praveen, Sagar, Amit Dwivedi, Sandeep, Shakuntala, Vasand,

Punith, Nitin, Vivek, Gaurav Bali, Arvind Gautam, and Inderpal.

Thank you to Celestine, Aditee, and the entire team at Apress for turning our ideas

into reality. It has been an amazing experience authoring with you, and over the years,

the speed of decision-making and the editorial support have been excellent.

Thank you, goddess Saraswati, for guiding us to the path of knowledge and

spirituality.

असतो मा साद गमय, तमसो मा ज्योतिर् गमय, मृत्योर मा अमृतम् गमय
(Asato Ma Sad Gamaya, Tamaso Ma Jyotir Gamaya, Mrityor Ma Amritam Gamaya)

Lead us from ignorance to truth, lead us from darkness to light, lead us from death to

immortality.

Acknowledgments

xv

Preface

Agile has transformed the way software development is done today. Digital organizations

and startups have embraced and reaped the benefits of agile and DevOps. However,

the infrastructure and cloud operations world has largely remained untouched by the

agile movement. The infrastructure and operations world has largely continued using IT

service management and ITIL for running scale operations.

There are many best practices that can be adopted for operations, namely, agile,

DevOps, site reliability engineering (SRE), lean, ITIL, IT4IT; however, there is no

guidance available on how to use these processes in the IT infrastructure world.

Similarly, there are tools available for running these processes, but there is no guidance

available on how to use these tools for running operations.

With the advent of cloud computing, it has become equally important to understand

the benefits of IaaS, PaaS, or SaaS for enterprises. There has been a shift from a

monolithic to microservices architecture to improve the availability and up time for

environments and applications.

There are numerous agile methods like Scrum, Kanban, and scrumban and different

scaled agile frameworks such as SAFe®, Spotify, LeSS, and Nexus, DAD. Enterprises find

it difficult to decide which agile framework and method to adopt. They can be easily

adopted for operations both for on-premise and the cloud.

This book is a hands-on guide on how to adopt agile, DevOps, and SRE practices;

how to build a roadmap for them; and how to select the most suitable processes for your

organization to achieve higher reliability, agility, and lower costs while running cloud

and infrastructure operations.

Specifically, the book covers the following in detail:

•	 Agile in software development versus operations

•	 ITIL, IT4IT, and lean, and their relevance in agile operations

•	 Scrum, Kanban, and scrumban agile methods

•	 Scaled agile frameworks for agile operations

•	 Site reliability engineering and integration with agile and DevOps

xvi

•	 DevOps and applicability in agile operations

•	 Infrastructure as a code and its integration with pipelines

•	 Agile stories and examples for operations

•	 Creating a team structure for agile operations

•	 Creating a roadmap for the adoption of agile in operations

•	 Case study for agile operations

We welcome you to this exciting journey of discovering new ways of running

IT operations by leveraging various processes, methods, and techniques to create

an efficient, cost-effective, and agile model that serves the needs of modern digital

enterprises.

We will also be creating content and best practices on a continuous basis that you

can view on the companion site at www.AgileInfraOps.com.

Preface

http://www.agileinfraops.com

1
© Navin Sabharwal, Raminder Rathore, and Udita Agrawal 2022
N. Sabharwal et al., Hands-On Guide to AgileOps, https://doi.org/10.1007/978-1-4842-7505-4_1

CHAPTER 1

Introduction
In this chapter, we will be introducing agile and its relevance in bridging the gap between

the development and operations teams that traditionally work in silos. The topics that

will be covered in this chapter are as follows:

•	 Agile history

•	 Evolving software teams

•	 Bridging the gap between Dev and Ops

•	 Complementing agile with DevOps

•	 Agility in infrastructure operations

•	 Agile Manifesto

In the 21st century, digital enterprises are constantly innovating and experiencing

advancements across all fields such as science and technology, economics,

urbanization, biotechnology and medicine, and many other areas. Each of these sectors

is evolving based on customer needs and becomes successful when it quickly adapts

to changing demands. Businesss in these sectors also understand the importance of

data and leveraging technology to instantly access this data. Quick access to data helps

organizations make wise decisions, prepare organization roadmaps, budget for new and

innovative programs, and get prepared for the future. All this has been made possible

by the adoption of technology platforms that enable companies to access reusable

components, revive quickly from failures, and stay globally connected. The management

and maintenance of the technology platforms are taken care of by the information

technology (IT) department, the backbone serving internal and external customers for

their various IT needs. These IT teams have also evolved with time and become agile to

support the digital businesses. Teams are willing to transform quickly so that they offer

timely services to their customers. Agility for them is no longer optional; instead, it has

become a necessity. Organizations today leverage IT teams not only for addressing their

https://doi.org/10.1007/978-1-4842-7505-4_1#DOI

2

basic operational tasks but also for building new systems rapidly that are compliant

and secure. Typical waterfall application development projects took months or even

years; with agile methodologies, new updates are rolled out weekly or monthly. There

are organizations that are rolling out updates daily or even multiple times a day. As

technology and processes evolve, IT teams are scaling with new agile ways of working.

There are numerous success stories on how agile adoption has helped organizations

to quickly scale, fail fast, deliver in iterations, and excel by prioritizing their requirements

based on customer feedback. The Agile Manifesto with its 12 principles is the key driver

that is making organizations successful. In fact, many organizations have identified and

designed custom agile methods that best suit their ecosystem of people, process, and

technology. Since inception to its current state, agile has transformed the way products

and solutions are delivered to consumers. The concept is not restricted to the IT world

but has benefitted many non-IT companies too.

Though the concept of agile in the IT industry has been around for more than

two decades, this will remain an evolving subject for many more years to come. Every

company that is planning to adopt agile or has adopted agile has a clear vision, which is

to “deliver fast” with no compromises on security and quality. To address the growing

market needs and frequently changing customer demands, the ability to deploy quickly

is possible through highly effective autonomous teams practicing agile principles. Over

the years, various methods and tools have been designed to simplify the adoption of

agile across multiple industries. New operating frameworks have been introduced

that comprise optimized processes and new roles and responsibilities that nurture

the culture of collaboration and accountability. A team’s location is now no more a

constraint. Companies that have a cloud and digitalization roadmap are rapidly moving

into agile. Agile models like Nexus, Spotify, etc., are being adopted at scale. Alongside the

agile movement, new roles like site reliability engineer are emerging. These new roles are

growing in demand in most organizations, and the expectation is to reduce dependency

on human actions and introduce automation as much as possible. Organizations are

cross-skilling and reskilling their teams to work in agile development and operations.

Some organizations start with a bottom-up approach wherein they first target

“being agile,” which means they start with smaller application teams or infrastructure

operations teams and onboard them to agile ways of working. Then they slowly

transition toward enterprise adoption by “doing agile,” which means there is visibility

and accountability at all levels. Various agile tools and techniques are leveraged to

Chapter 1 Introduction

3

ensure the organizational transformation is successful and teams practice the culture

of trust and transparency. There are best practices, publications, and guidance

available aplenty on agile and its adoption in the application development space;

however, when it comes to adopting agile in the operations area, it is still dominated

by ITSM methodologies like ITIL. This book will share experiences and best practices

for adopting agile in the infrastructure, cloud, and application operation spaces. It

also looks at the needs and the reasons for being agile in the infrastructure world,

which focuses on agility, improved visibility and communication, team accountability,

continuous learning, increased productivity, and customer experience. Though agile

has been used extensively across organizations in the software development space, its

adoption and usage in the infrastructure space is still a gray area. The practices of Scrum,

Kanban, XP, etc., are well documented, and guidance around these are available in

abundance; however, when it comes to “what” and “how” to adopt these methodologies

in the infrastructure operations space, there are missing links. There are multiple best

practices, methodologies, and working models available on site reliability engineering

(SRE), DevOps, and infrastructure as code (IaC), which have overlapping guidance,

processes, and roles. This book connects all these concepts and provides rich guidance

to run end-to-end development and operations successfully. It also compares the

frameworks and runs through different scenarios, allowing teams to choose the best

method and operating model for their organizations.

There is a lot of existing literature and guidance available on adopting agile in the

software development space. This publication aims to bring these to the infrastructure

and cloud operations world and addresses the following:

•	 Evolution of traditional to modern agile ways of working

•	 Need for being agile in infrastructure and cloud operations

•	 Emerging roles in the agile world

•	 Understanding different agile methods and how to implement them

•	 Comparing various agile methods and benefits

•	 New technology platforms for adopting agile

Chapter 1 Introduction

4

�Agile History: The Starting Point
Officially, agile’s inception started during early 1990s when there were a few

organizations that practiced extreme programming (XP), the Scrum methodology,

and other agile processes to speed up their delivery timelines. In early 2000s, the agile

principles were formalized into a manifesto and published for wider consumption. But

its actual acceptance in IT happened in early 2010s. Agile was always well accepted

and preached by development teams, and it became a de facto standard for delivering

software. The four core guiding principles of agile embraced the new culture that

responded to instant changes and focused on team collaboration. Other departments

like infrastructure operations still continued with their traditional approach, detailed

documentation, multiple approval gates, and manual lengthy processes. There existed

two worlds in the product development space; one was agile driven, and the other was

nonagile and followed rigid processes and approval workflows and the waterfall model

for planning and delivering.

Interestingly, it was not just IT that benefitted from the concepts of agile; there were

other domains that leveraged agile tools and practices like defense, aerospace, etc. There

is an interesting story of a logistics officer in the Royal Navy named Paul Jackson who

believed in agile principles and benefitted from them in his very first assignment on a

new ship. On this first assignment, he studied that the maintenance program for the ship

could be shortened from weeks to just five days using agile principles. In these five days,

he had to ensure that the ship’s staff had enough supplies while on their journey for 90

days in the sea. He started running daily standups every day to prioritize and align with

the needs instead of executing on a detailed plan. Each day’s meeting helped him and

his team to reprioritize as needed. Finally, the efforts spent in iterations on these five

days helped Paul finish his job successfully. The iterative approach helped Paul and his

team, and they became agile believers. There are hundreds of success stories across the

globe that signify that short iterative cycles with an agile mindset help teams accomplish

their targets easily. The idea behind agile’s success was iterative delivery, which was

better than the traditional waterfall approach of delivering products and services in a

sequential manner with integration testing coming in at the very end of the process. The

adoption was not just about new processes and ways of working, but it also introduced

new role definitions. Roles like Scrum master, product manager, etc., were introduced

that motivated professionals to upscale, and teams underwent structural changes

to address the new model of delivery. The expectation was clear that teams should

deliver in small iterations that were named sprints, and these deliverables were called a

Chapter 1 Introduction

5

minimum viable product (MVP). An MVP can be visualized as a prototype with enough

features that can be verified by customers. Feedback from customers on MVPs served as

enhancements for future product development and changes. At the end of each sprint,

the focus was to get feedback from the customers or stakeholders and implement these

iteratively so that each product developed met customer expectations. This method

helped teams to happily accept changes as they moved ahead in their delivery cycle.

This was easy for a development team, but applying these principles in the infrastructure

world is still a challenge. See Figure 1-1.

�Evolving Software Teams: Drifting to New Ways
of Working
Let’s take a step back and look at the different teams that are part of a product lifecycle.

A traditional software team comprises five major groups: development, testing/

QA, security, operations, and governance/PMO. Though each team is committed to

delivering fast, they practice their own set of rules, and this leads to delays or issues.

Communication across different groups is also a challenge. As time progressed and

the agile principles started getting popular and having a positive impact on software

delivery, development groups adopted the agile principles quickly. But other teams

lagged behind due to their traditional methods such as manual checkpoints, multiple

approval gates for compliance and security checks, relaxed SLAs, etc.

The infrastructure operations continued their rigid ways of working. This was not

without reason, and there were technical and process limitations that mandated the way

infrastructure teams operated. A key reason for the rigidness was their accountability that

ensured that the systems were reliable, were highly available, complied with architectural

standards, were secure and verified, and were approved by designated approval authorities.

Also, the on-premise infrastructure had to be run in a planned waterfall model, and

Figure 1-1.  Did you know?

Chapter 1 Introduction

6

detailed planning was needed to ensure every individual component worked with the

other hardware components. Since the infrastructure teams dealt with hardware rather

than software, it was required to have detailed planning, architecture, and documentation.

Any miss in the hardware components would set back the project by months since new

components had to be procured, shipped, and then installed. Some of the processes are also

essential for reliable and secure software development. To ensure reliability and security,

elaborate change and release management processes with multiple steps and multiple

stakeholder approvers were put in place. These processes became part of the daily routine

and culture, and after a while they became so entrenched in the minds of people that any

deviation from these processes became an organizational change management problem.

Thus, on one hand, the development teams were delivering periodically and wanted to

deploy new changes instantly. On the other hand, infrastructure operations had defined

schedules, and making frequent changes to the system was a Herculean task for them. The

infrastructure operations team is the backbone for any organization since it manages the

servers and platforms, integrates with security, and works with other teams to ensure that

the systems are compliant to the defined policies, procedures, and statutory requirements.

This gap between development and infrastructure operations teams existed for many

years. But with evolving changes in IT and the availability of new platforms, organizations

understood that they needed to change their ways of working. They needed to bring the

infrastructure operations team closer to the development teams and enable themselves

on agile and continuous delivery, which is the only way to enable software to be rolled

out to the customer faster. Otherwise, it would be coded, tested, and integrated but not

deployed on production systems and hence unavailable to the customers, thus defeating

the whole purpose of an agile and iterative delivery. All this was made possible because of

a technology shift to the cloud where infrastructure could be created and destroyed using

code just like software components. This tectonic technology shift now impacts the way

teams are structured, skilled, and operate. See Figure 1-2.

Figure 1-2.  Did you know?

Chapter 1 Introduction

7

�Bridging the Dev and Ops Gap
So, while at one end, the development teams were always looking out to push new code

in production, the operations teams resisted changes. A common scenario that has

been evident is where the development teams are in need of an environment, but they

have to follow a tedious process to request this new infrastructure that includes multiple

approvals. This traditional process had a long turnaround time that results in frustration

for the development teams. There are many organizations where such requests were

delivered by their operations team in weeks rather than days. While development teams

wants to be quick, operations slow down their speed. See Figure 1-3.

With changes in the business environment and availability of latest technologies,

organizations have accepted the fact that agility and DevOps are the need of the hour

and that they need to quickly identify ways to bridge the rift between the development

and operations teams. So, it is not just agile that is to be nurtured, but there is a need to

embrace DevOps across all teams in the organization. Most organizations are looking

for quick deployments and ways to empower their teams so that they can have access

to instant infrastructure and an end-to-end visibility of their product lifecycle. All

this is becoming possible through people motivation, upskilling, investments in new

technology, and streamlined processes to reduce turnaround time.

�DevOps: Complementing Agile
The term DevOps was coined by Patrick Debois, a Belgian IT consultant and agile

practitioner in 2009. The core principles of DevOps are providing better integration

between developments and operations, reducing the friction between the development

Figure 1-3.  The Dev and Ops wishlist

Chapter 1 Introduction

8

and operations teams, and ensuring realization of the agile promise of faster product

delivery to customers. DevOps covers the entire product lifecycle from design to

operations and aims to achieve continuous deployment.

DevOps promotes the following key principles:

•	 No more silos: Greater collaboration across the entire product

lifecycle and between development and operations teams will result

in higher productivity and fewer operations issues.

•	 Failures are normal: Preventing all failures is impossible, but DevOps

focuses on learning from failures and treating them as opportunities

to improve.

•	 Gradual changes: Incremental and gradual changes to the

environment in smaller sprints are aimed at increasing throughput,

getting working software in the hands of the consumer, and realizing

the aim of agile by moving to a model of continuous deployment.

•	 Automation: Automation is the key focus of DevOps; it aims

to achieve continuous integration, testing, development, and

deployment and to eliminate manual steps.

•	 Metrics: Changes should be measured, and the impact of changes

should be analyzed to drive continual service improvement.

�Agility in Infrastructure Operations: Need
of the Hour
While automation is low-hanging fruit that can be achieved, the most challenging

part is bringing the development and operations teams together and cultivating an

environment of trust and accountability. While development teams practice agile, the

infrastructure operations team needs to get up to speed. They need to be mentored on

the need to do operations in an agile way and also upscale themselves on automated

platforms that can ease their job and reduce toil. In the past decade, the rise of

infrastructure as code has gained momentum and is resulting in a higher level of

abstraction and automation at the infrastructure layer. Additionally, there has been an

increase in the adoption of cloud platforms that is accelerating the process of bridging

Chapter 1 Introduction

9

the gap between the development and infrastructure operations teams as well as

providing the right foundation for automation and infrastructure as code. Development

teams are becoming empowered since they get access to spin up and decommission dev

and test environments as needed, and on the other hand, the infrastructure operations

teams have the tools and technologies to enable faster deployments that are now made

possible through automated pipelines. Teams at both ends have realized the benefits

and the need to be agile.

In fact, this served as an example for many organizations that responded to sudden

changes in the environment and were quickly able to release new functionality and

features thereby increasing adoption of their technologies and their customer base and

revenue.

�The Agile Manifesto: Simple Guiding Principles
The Agile Manifesto was written in February 2001 by a group of software and

methodology experts. The manifesto is simple to understand. It states the agile values

mentioned in Figure 1-4. It emphasizes that the values mentioned on both the sides

of Figure 1-4 will exist; however, more focus and effort should be put on the values

mentioned on the left side. Like individuals and interactions, processes and tools both

will exist, but more focus should be given to establish interactions with individuals than

processes and tools.

Figure 1-4.  Agile values

Chapter 1 Introduction

10

While agile serves the purpose of delivering fast, it needs to be complemented with

a true DevOps culture that connects teams and processes through automation. The

essence is not to just streamline the processes but also focus on people and tools. While

agile focuses on the development teams, DevOps, on the other hand, promises to bind

teams together (Dev, QA, Ops). Both agile and DevOps act as an excellent mediator

for implementing the principles of coupling and cohesiveness; hence, DevOps and

agile complement each other. While agile refers to an iterative approach of delivering

software, DevOps refers to the ways of working between development and operations (an

end-to-end engineering practice). It is an interesting journey to note how organizations

are adopting both agile and DevOps and responding to the changing ecosystem.

This book encapsulates all the previous topics and synergizes them with the new trends

that are emerging in the agile and DevOps world, especially for infrastructure and cloud

operations teams. Several new methods, roles, and expectations have evolved, and we will

walk through them with real-life examples. The idea is to provide a 360-degree view on how

product teams can function effectively using the right agile methods and tools. We will look

at real-life examples of implementing agile methods like Kanban and Scrum with tools

like Jira, Jenkins, etc. There are various examples cited throughout the book that include

infrastructure and cloud operations story writing, story estimation techniques, and how

cloud technologies and platforms are helping teams build and deliver services quickly. The

technique of failing fast is essential, and this is resonated in this book with various methods

that help teams to fail and recover. We will focus on best practices that infrastructure and

cloud operations should leverage to be successful in the agile and DevOps worlds.

�Summary
Agile is an important need today. Besides software application development teams,

even infrastructure operations teams are adopting an agile mindset to deliver

quickly. These teams practice agile principles that focus on delivering value in small

increments, continuously monitoring feedback and fostering effective collaboration.

The introduction to new platforms like cloud, container technology, automated

deployments, etc., are accelerating the path to newer ways of working that are no

longer an option but a need. New roles are also evolving that are making teams more

accountable and connected. This book is a starter kit for all the teams, especially

the cloud and infrastructure operations teams, that are looking for guidance and

recommendations toward adopting agile and DevOps.

Chapter 1 Introduction

11
© Navin Sabharwal, Raminder Rathore, and Udita Agrawal 2022
N. Sabharwal et al., Hands-On Guide to AgileOps, https://doi.org/10.1007/978-1-4842-7505-4_2

CHAPTER 2

Traditional Infrastructure
Operations
In this chapter, we will discuss the traditional way of working in infrastructure operations

where IT service management processes are used and agile has not been adopted for

operations. A majority of organizations are running infrastructure and cloud operations

in this model today, while a few organizations have successfully migrated to agile ways of

operations. The topics that will be covered in this chapter are as follows:

•	 IT service management approach

•	 Drawbacks of traditional InfraOps teams

•	 Need for change

An infrastructure operations team is an IT team that specializes in managing the

environments (on-premises, cloud, etc.) and may be providing services to both internal and

external customers. An internal customer could be the development teams that request

services around provisioning, upgrading, and managing the environments (such as dev,

test, production, etc.). External customers are users who access production system that

host applications. An environment can be visualized as an integrated set of components

such as compute, storage, networks, backups, security, monitoring, management, and

everything needed for running that machine in a compliant and secure manner. The

InfraOps team is responsible for monitoring, managing, maintaining, upgrading, installing,

and configuring the components, as well as maintaining security. The team works closely

with governance and security teams for regular validations of the systems in use. Anything

that has to be introduced in the system is well tested and approved through a well-defined

set of processes. These teams adopt and run operations using best practices and processes

aligned to ITIL, IT4IT, etc., that track and audit their actions. For many years these teams

have operated in silos and followed their own processes and principles, and they have

limited collaboration with the application development teams. See Figure 2-1.

https://doi.org/10.1007/978-1-4842-7505-4_2#DOI

12

�ITSM Approach
The infrastructure operations team acts as a backbone service. The team services

multiple internal teams with various infrastructure needs but typically operates on

rigid processes. Interestingly, the team has been successful for a long time, thanks to

frameworks like ITIL (formerly an acronym for Information Technology Infrastructure

Library) that helped teams to follow defined processes. The teams have a well-defined

support curriculum that includes OS and kernel support, physical server and VM

maintenance, server provisioning, server patching, backups, storage, databases, user

identity management, active directory, high availability/disaster recovery (HA/DR),

server monitoring, etc. The focus is on ensuring that the systems are secure and are

compliant, that each step of the process is defined, and that every action is logged and

measured through service level objectives and service level agreements. The process

of deploying new changes in production is well planned and is executed after multiple

approvals from the respective technical lines of businesses. These deployments are

planned during off-hours or during weekends. There are also processes and procedures

for backing up and restoring and in the case of a change failure reverting to the original

configuration. Multiple teams from infrastructure, virtualization, storage, network,

disaster recovery, business continuity plan (BCP), change managers, and application

teams are required during large and complex datacenter changes. Requests for

provisioning new infrastructure also follow a stringent process.

Dev and QA teams have struggled with this traditional approach since their target

to deliver quickly is compromised due to a lack of agility in the infrastructure space.

Developers and testers have to wait for environments to be provisioned, and this delays

their milestones. See Figure 2-2.

Figure 2-1.  Did you know?

Chapter 2 Traditional Infrastructure Operations

13

Most InfraOps teams operate 24/7, and application development teams reach

out to them through information technology service management (ITSM) tools like

ServiceNow, Remedy, Jira, etc. The InfraOps teams provide support across different

areas with strict SLAs. Let’s now deep dive into ITIL, which has been the backbone of IT

service management processes.

ITIL comprises detailed practices and processes for implementing IT service

management. It can be visualized as a catalog that lists processes, tasks, and checklists

required to accomplish services. In other words, it is a collection of best practices that

are needed to manage and improve IT services and support. The service lifecycle focuses

on coordination across various departments, teams, and processes that are necessary

for managing the lifecycle of IT services. An IT service is provided to customers by an IT

service provider that focuses on a customer’s business processes and needs. The ITIL

4.0 generic processes are laid out by ITIL at https://www.axelos.com/

best-practice-solutions/itil.

ITSM has four key pillars, called the four Ps, as shown in Figure 2-3.

Figure 2-2.  Reality check for traditional ops

Chapter 2 Traditional Infrastructure Operations

https://www.axelos.com/best-practice-solutions/itil
https://www.axelos.com/best-practice-solutions/itil

14

Processes: Processes should be measurable and have specific

results that are quantifiable, that are customer centric, and that

deliver value to them meeting their expectations.

People: People are all the required stakeholders who are either

creating a service or consuming a service within an organization.

Products: Products refer to the tools that are used by the IT service

staff to implement the ITIL processes. Tools that are required are

integrated and used to execute the organizational processes.

Partners: Organizations have many partners who work along

with them on IT services. This requires support agreements and

requirements to be communicated to the partners.

There are various roles in ITSM, listed here:

•	 Process owner: The process owner owns the process, is involved in

the process design, designs the strategy, and also defines process key

performance indicators (KPIs).

•	 Process manager: The process manager manages the resources,

aligns resources on different roles, tracks process performance, and

provides improvements in the process.

Figure 2-3.  ITSM’s four Ps

Chapter 2 Traditional Infrastructure Operations

15

•	 Process practitioner: The process practitioner works on multiple tasks

of a process and ensures accuracy. This person also updates the

status of the tasks in respective tools for a smooth handover.

•	 Service owner: The service owner is accountable for the service

delivery and is the primary customer contact. The service owner

also plays the role of business analyst or service requirement and

identifies improvements in services.

The framework comprises five essential stages.

�Service Strategy
Service Strategy focuses on the service lifecycle and describes how to design, develop,

and implement service management (see Figure 2-4). It defines the target customers and

what value the service will deliver. It helps service providers to meet business objectives.

This stage involves key processes such as the following:

•	 Demand Management: This relates to understanding the customer

requirements. It is necessary to meet customer expectations by

providing services along with agreed warranty terms.

•	 Financial Management: This facilitates budgeting and cost of services

and performs financial reviews.

•	 Service Portfolio Management: Service Portfolio is set of services

managed by a service provider. These services are part of the service

catalog. It has services that are active and can be consumed by

consumers.

•	 Business Relationship Management: This is all about customer

interaction and communication. The customer interacts with

business relationship managers for projects. They manage the

business relationship with stakeholders.

Chapter 2 Traditional Infrastructure Operations

16

�Service Design
Service Design includes designing services based on the business requirements and

objectives that provide value to the customer (see Figure 2-5). It focuses on delivering

effective IT solutions that are aligned to business needs. It describes the “how” part of

designing services and processes. It includes key processes such as the following:

•	 Service Level Management: This ensures that specific and

measurable targets are developed for all IT services. It is directly

related to customer satisfaction as it relates to how quickly

issues are responded to, as well as their resolution and quality.

It includes service level requirements, service level agreements,

operational level agreements, underpinning contracts, and service

improvement plans.

Figure 2-4.  Service Strategy

Chapter 2 Traditional Infrastructure Operations

17

•	 Supplier Management: This stage manages suppliers and the services

they supply to customers.

•	 Service Catalog Management: This contains all the operational and

planned services and their details including status, interfaces, and

dependencies. The details in service catalog should be updated

regularly including with automatic live updates. Figure 2-6 shows a

sample catalog and its creation.

Figure 2-5.  Service level management

Chapter 2 Traditional Infrastructure Operations

18

•	 Availability Management: In the current era, it is important that the

IT infrastructure and applications are both always available. This

stage designs, implements, measures, manages, and improves the

IT service and component availability. Availability is expressed as a

percentage, as shown here:

Availability = (Agreed Service Time – Downtime) * 100

--

Agreed Service Time

•	 Capacity Management: The goal here is to provide the required

infrastructure in a cost-effective manner and ensure its effective

utilization. Organizations are transitioning from on-premise

infrastructure to the cloud to have better infrastructure utilization.

Capacity Management changes drastically when organizations move

from on-premise infrastructure to on-demand infrastructure. FinOps

plays a key role in cloud capacity management and needs to be

incorporated as a function to manage the cloud resources and their

consumption along with the financial management of the various

models of consumption available in cloud computing environments.

Figure 2-6.  Service Catalog Management

Chapter 2 Traditional Infrastructure Operations

19

•	 Service Continuity Management: This ensures the required services

can be resumed in the case of a failure or disaster. It includes tasks

to perform risk assessment and risk management to proactively

avoid the risks or disasters from occurring (see Figure 2-7). It aims

at reducing risks by developing a recovery plan to restore business

activities if they are interrupted.

•	 Information Security Management: This aligns IT security with

business compliance. It enforces security in all aspects in all services

and service management activities. It also deals with risk analysis and

risk management.

•	 Design Coordination: This is a single point of coordination among all

activities and processes. It also ensures the objectives of the Service

Design stage are fulfilled and handed over to the Service Transition

stage.

Figure 2-7.  A risk framework

Chapter 2 Traditional Infrastructure Operations

20

�Service Transition
Service Transition explains how to manage the transition of a new or modified service

(see Figure 2-8). It comprises key processes such as the following

•	 Transition Planning and Support: This involves planning and

coordination for the services across all relevant stakeholders like

suppliers, service teams, etc. It also ensures the requirements from

Service Strategy are smoothly transitioned into developed services

from the design stage to Service Operation.

•	 Service Asset and Configuration Management: All the components

of services and infrastructure have to be managed. Its configuration

details such as current and planned state, historical information, etc.,

need to be maintained. The configuration management database

(CMDB) is widely used for maintaining configuration details for

infrastructure. It also supports service management processes by

providing configuration information for the assets.

Figure 2-8.  Service Transition

Chapter 2 Traditional Infrastructure Operations

21

•	 Change Management: The objective of the Change Management

process is to ensure that changes are recorded or entered in the

respective ALM (Application Lifecycle Management) tool and

then evaluated; discussed in the change review board or meeting;

and then prioritized, planned, and implemented on the planned

date and time (see Figure 2-9). Change Management needs

standardized methods and procedures to be used for handling the

changes effectively and efficiently. All the changes to services and

configuration items are updated in the configuration management

system.

•	 Release and Deployment Management: The objective is to build,

install, test, and deploy applications or services in the target

environments. This process ensures that the new or updated service

or configurations are delivering the correct requirements. There are

various automated tools that can be used to automate the Release

and Deployment Management activities.

Figure 2-9.  Change Management process

Chapter 2 Traditional Infrastructure Operations

22

•	 Knowledge Management: The objective is to harness and harvest

knowledge for reuse rather that re-inventing and re-discovering

knowledge. This is beneficial when the service knowledge

management system is created, maintained, and regularly updated.

�Service Operation
Service Operation is about coordinating and performing activities that are required for

the smooth running of services (see Figure 2-10). It ensures that the required services

are delivered as per the agreed upon service levels. It includes key processes such as the

following:

•	 Event Management: The objective is to detect events at all levels and

take appropriate actions to handle the events. The automated tools

monitor the events and generate alerts based on the set process

for them. It provides a basis for proactive monitoring and service

improvement. This has now evolved into a new domain called

Observability, and the emphasis is on end-to-end monitoring using

logs, metrics, events, and traces. This includes advanced capabilities

to provide an end-to-end view and provide correlation across

infrastructure and applications to be able to find out the root cause of

issues.

•	 Incident Management: The objective is to restore service operations

to normal as quickly as possible to avoid an impact on the business.

It focuses on delivering quality services and higher availability with

minimal downtime. The incidents can be failures that are detected by

Event Management or reported by users.

Chapter 2 Traditional Infrastructure Operations

23

Figure 2-10.  Incident Management process

•	 Problem Management: The objective is to prevent incidents by

finding their root cause of occurrence (see Figure 2-11). Eliminate the

incidents that occur periodically and focus on minimizing the impact

for incidents that cannot be prevented.

Chapter 2 Traditional Infrastructure Operations

24

•	 Request Fulfillment: The objective is to fulfill the service requests

raised by users. Service requests fall into different categories

such as informational ones on status of a service, access requests,

complaints, etc.

•	 Access Management: The objective is to provide authorized users

with the required access rights to use a service. Access Management

follows the policies that are listed for Security and Availability

Management.

�Continual Service Improvement
This stage focuses on how to re-align IT services to match business changes. It matures

the IT services by implementing identified improvement areas. It follows the famous

Deming cycle, which has four stages: Plan, Do, Check, and Act. It also follows the seven

steps in the Service Improvement process (see Figure 2-12). See Figure 2-13 for a tip.

Figure 2-11.  Problem Management lifecycle

Chapter 2 Traditional Infrastructure Operations

25

Figure 2-12.  Seven-step improvement process

Figure 2-13.  Did you know?

Chapter 2 Traditional Infrastructure Operations

26

�Drawbacks with Traditional InfraOps Teams
The InfraOps team can continue with the way it has been operating all these years, but

times have changed, and there is an urge to move to a new operating model that is more

aligned with newer technologies such as cloud, containerization, and infrastructure

as code. Let’s take a look at some of the drawbacks of the traditional infrastructure

operations model:

•	 Structured but rigid process: There’s no room for flexibility, and

repetitive tasks are performed manually. For years, the InfraOps team

has trusted manual ways of working and continued with this strategy.

•	 Limited collaboration with other teams: Requests are submitted

through tickets and emails; there are dependencies; and delays are

expected.

•	 Siloed specialization: This approach has I-shaped expertise, leading

to an increase in hand-offs and affecting customer expectations.

•	 Highly customized on-prem environment: Manual efforts are

needed to set up new infrastructure or make changes to existing

infrastructure. Manual checklists are followed to track the changes.

Both integration and architecture are complex.

•	 Ticket-based communication: There are multiple approvals and

hand-offs needed when implementing a change, thereby increasing

wait times.

�Need for Change
The traditional approach was good until the industry took a shift toward digital.

Organizations realized that they could succeed only if they knew their customers well

and were able to respond and provide relevant, needed services. This digital age needs

new thinking, strategies, and processes, as well as investments in people and new tools

and technologies that will help them to optimize. For example, if a tester is empowered

to set up a test environment the same day using self-service instead of waiting for two

weeks, wouldn’t this help in completing tasks ahead of time?

Chapter 2 Traditional Infrastructure Operations

27

It is not only the speed of delivery pressure that is driving infrastructure operations

toward agility, but there are other factors too that are forcing organizations to modernize

their infrastructure IT operations such as technology drift, customer interests, global

presence, etc. See Figure 2-14.

The drift from traditional to agile operations will benefit teams at various levels

and foster a culture of collaboration. It also helps teams stay focused toward one goal:

delivering quality services on time. While many organizations have already transformed

themselves into agile and DevOps ecosystems, still there are organizations that need

to initiate and adopt the new culture. Building cross-functional teams, fostering self-

service, and standardizing on tools rationalization are all the immediate things to be

considered by InfraOps teams. Even organizations that have implemented DevOps

and agile have yet to integrate InfraOps and bring in holistic alignment in delivering

Figure 2-14.  Need to adopt agile InfraOps

Chapter 2 Traditional Infrastructure Operations

28

IT services. Since agile InfraOps is relatively new, organizations have not been able to

move forward due to a lack of available best practices and ready-to-use solutions and

accelerators. This book aims to bridge the gap and provide insights from real-life projects

for implementing agile in infrastructure operations.

�Summary
IT infrastructure operations teams traditionally have been responsible for managing

on-premises datacenters that offer services such as compute, storage, networks, security,

backup, high availability, disaster recovery, monitoring, management, etc. Their focus

has always been on integrating IT assets and ensuring security and compliance are not

compromised. IT infrastructure organizations have also been practicing ITIL, which

is a framework comprising best practices that guides organizations on how to serve IT

services. These services are standardized and help teams to track and meet SLAs. But

with changing times, the rigid processes need to be refreshed, and teams that earlier

had limited collaboration with application development teams now have a need to

collaborate and offer services in an agile way rather than running things in a traditional

way. This change is possible through the principles of agile and DevOps.

In the next chapter, we will start covering agile and DevOps principles before

embarking on best practices for implementing these methodologies in the infrastructure

operations world.

Chapter 2 Traditional Infrastructure Operations

29
© Navin Sabharwal, Raminder Rathore, and Udita Agrawal 2022
N. Sabharwal et al., Hands-On Guide to AgileOps, https://doi.org/10.1007/978-1-4842-7505-4_3

CHAPTER 3

Introduction to Agile
and DevOps
This chapter will introduce agile and DevOps, including its values, principles, and benefits

when both work together. The topics that will be covered in this chapter are as follows:

•	 When should you adopt agile?

•	 Agile principles

•	 Agile benefits

•	 Scaling agile with DevOps

•	 When should you adopt DevOps?

•	 DevOps in the product lifecycle

We realize that agile and DevOps complement each other, and their adoption

enables organizations to excel and deliver frequently. While agile focuses on continuous

delivery, DevOps brings in best practices that can fast-track the integration of the

development and operations teams and the adoption of the best practices for agile.

So, can we just adopt agile or DevOps? What are the overlaps and integration points

between agile and DevOps? How do we implement them together? Can we use agile and

DevOps in infrastructure operations? To answer these questions, we need to understand

agile and DevOps in more detail.

�When to Adopt Agile?
Agile is an approach that recommends, facilitates, and provides guidance around

iterative delivery, which is possible with connected teams, open collaboration,

end-to-end integration of product lifecycle phases, and continuous work on customer

https://doi.org/10.1007/978-1-4842-7505-4_3#DOI

30

feedback. Adopting agile is helpful when teams need to deliver a minimum viable

product (MVP) in short sprints where customer feedback is important to drive the next

change or feature in the product. Thus, development teams gain more confidence and

trust from the customers of their product. Rather than releasing once a month and

pushing integration testing to the end, the focus is on releasing fast, getting feedback,

and providing working software early on in the cycle.

�Agile Principles
IT teams have been adopting agile methods that encompass the 12 principles shown in

Figure 3-1.

Principle 1: Focus on Customer Satisfaction

One of the key targets for any business is to increase the customer footprint that

is complemented with an excellent satisfaction rate. To achieve a good customer

satisfaction score, we need happy customers who are looking for products that have

flexible service offerings that cater to their needs. This is achieved by staying close to

the customer and getting their feedback frequently, which helps IT teams to plan and

Figure 3-1.  Agile principles

Chapter 3 Introduction to Agile and DevOps

31

change course in a timely manner. Early feedback helps teams to avoid large changes

later in the process as well. Numerous companies nowadays launch their products in

small batches often termed as alpha and beta versions before the larger, final product

launch. This helps them to understand the customer preferences and change the

product roadmap as needed. Listening to customer feedback enables teams to build

what is needed by the customer and not plan for something that has no votes. Hence,

every customer is important, whether it is an internal product team that needs a new

environment set up or an external customer that consumes the product or service. A

good score is a clear indication that the customer likes the product. This also becomes a

key performance indicator (KPI) for teams.

Principle 2: Welcome Change

Change is inevitable, and teams should welcome change at every stage of the product

lifecycle. This is possible by coaching teams and helping them understand the purpose

of adopting a change. Teams should be ready for changes so that it can meet customer

demands. If this does not happen, then the product lags behind the competition, which

ultimately negatively impacts the organization. Another way to welcome change is in the

initial stages of development where customer feedback helps to alter the course of action

in a timely manner. Embracing frequent changes through a simplified process workflow

helps teams to be agile. Of course, the end goal is to deliver value to the customer that is

achievable when teams share and agree on the mission statement that is driven by the

customer.

Principle 3: Deliver Frequently

Customer feedback plays a key role in the product development lifecycle. Requirements

are prioritized and changed as per the customer expectations. Modern-day products are

delivered in stages, which helps IT teams to understand the actual demand at every stage

and course correct accordingly. Each stage needs to deliver working software that is

shared with customers for their feedback. This minimum viable product (MVP) enables

teams to regularly encapsulate customer feedback and ensure that the product is being

built in the right direction. So, instead of delivering an application in months, it is good

to reduce the cycle time to weeks or even days. Without frequent delivery of working

software, the change required at the end will be massive, and all work accomplished

may go to waste. It is also possible that by the time a product is delivered after months of

work, the market demand and features required have changed drastically, so the product

would work but would not be needed in its current shape and form anymore.

Chapter 3 Introduction to Agile and DevOps

32

Principle 4: Work Together

Traditionally you will find the business teams and the IT/technology teams running in silos

with limited collaboration. The business teams define the requirements, and the IT team

builds the product to address those demands. To ensure that the product delivers value, both

these teams need to connect and define common goals that meet the customer needs. In

fact, within an IT/technology team, there are numerous other teams that function at their

own pace (such as the development team, infrastructure team, architecture team, security

team, operations team, etc.). Irrespective of their function or hierarchy, all the teams within

an IT organization need to collaborate to move toward a shared vision. This is achievable

when teams share tools and platforms that follow optimized processes and provide

transparency and collaboration. These teams also need to be coached on becoming agile.

Principle 5: Establish a Collaborative Approach

Collaboration is all about teamwork, which is successful through transparent

communication. A culture of sharing and collaboration needs to be nurtured in an IT

organization, irrespective of a team’s location. Teams should be encouraged to share their

point of view and practice the notion of accountability. Teams are empowered when they

are mentored on agile and they understand the importance of trust and transparency.

Teams need to embrace the culture of “pulling work” rather than “pushing work.” This is

a core agile practice where teams become self-sufficient. There are excellent platforms

available that teams can leverage for constant communication and collaboration to

address every stage in the product lifecycle. Teams should cooperate with each other to

identity hurdles and resolve them as one team rather than working in silos.

Principle 6: Deliver Working Software

The concept of an MVP is essential and should be practiced on a regular basis. The MVP

is a product capsule that delivers a specific functionality that can be tested and verified

independently. This is successful when teams collaborate to verify the product from every

perspective such as resiliency, quality, security, compliance, etc. A working solution is proof

that the requirements have been understood and the team has made efforts to deliver it

as per the needs. In the initial stages of agile development, teams find it difficult to deliver

MVPs timely. There could be various reasons for this such as variance in requirements,

incorrect effort estimation, etc. But over the course of time and as the team scales on the agile

practices, they deliver MVPs, share them with customers, and look forward to their feedback.

This working software should deliver value that was asked for by the customer and that gets

incremented over time, which means new features get added as the product grows.

Chapter 3 Introduction to Agile and DevOps

33

Principle 7: Sustainable Development

Agile development focuses on delivering solution in iterations, and hence it is

sustainable over a long time period. Every stakeholder who is connected to the product

lifecycle should be able to move with a consistent pace. For sustained development, a

healthy work ecosystem is needed that motivates everyone to focus and deliver their

best. Teams can practice agility by constantly monitoring their technical excellence

to deliver good designs. This principle is nurtured by keeping a check on a team’s

satisfaction levers and not letting them lose focus. Teams should be able to participate

and absorb the expectations and not overload themselves. In fact, they should plan and

deliver constant value at regular intervals.

Principle 8: Maintain Simplicity

This principle focuses on not complicating deliveries. The idea is simple: start small,

deliver in a timely manner, and increment on top of it. Generally, teams don’t have

direct access to customers, and they get the requirements from their business team and

start building on the basis of these requirements. To simplify the development lifecycle,

if the team understands why they are building a feature, it gives them more details

and helps them plan better. As they build the product, this will help them stay focused

on the core deliverables that provide value to the customer and cut down on gold

plating and features that are not required. Using effective tools for communication and

transparency helps in driving simplicity. Simple but effective product delivery is what an

IT organization needs at the end of the day.

Principle 9: Reflect and Adjust

While the primary focus is to keep customers happy, IT organizations need to reflect on

areas for improvement. Organizations that have a defined path to adopt agile should

study their ways of working and modify the path as needed on a regular basis. For

instance, retrospectives help teams to identify the need for technical trainings to build

new architecture or, say, rework on their estimation techniques to ensure that the MVPs

are delivered on time. Teams need to absorb the new changes and ask for help if needed

to re-adjust quickly.

Principle 10: Self-Organizing Teams

Teams are an important core element of an agile organization. Successful agile teams

are those that become self-reliant over time. A culture of ownership and accountability

has to be instilled in the organization. This will enable teams to share a common vision.

Chapter 3 Introduction to Agile and DevOps

34

Constant mentorship and empowerment will help teams to upscale and grow, which is

achievable by adopting the right technology and platforms that act as catalysts to drive

innovation. An empowered team works on a bottom-up approach rather than a top-

to-bottom approach. This puts accountability on the teams working on the ground and

empowers them to make the right decisions needed to deliver value on time. If a product

owner defines the “what” aspect of a product, then a self-organizing team focuses on the

“how” aspect.

Principle 11: Continuous Feedback

The success of a product lies in its acceptance. Positive feedback indicates that the

product is moving in the right direction and that it meets the customers’ expectations.

Addressing customer feedback helps teams to prioritize the demands and make changes

as they progress. After all, it is a continuous journey of learning and improvement. In fact,

customer feedback should be collected at the initial stages of product development so

that the feedback is accepted in a timely manner. This feedback should be monitored and

tracked so that the customer voice is noted and so that the product roadmap is revisited.

Principle 12: Trust and Support

Two of the most important principles in agile are trust and support. The agile model works

when the organization trusts self-organizing teams to take decisions on the ground. Small

self-organized teams that can make independent decisions and change course quickly are

the keys to success in agile. Successful teams are the ones that are nurtured with new skills

and best practices regularly. Teams build successful projects when they are motivated

and are empowered to make decisions and are accountable for the value they plan to

contribute. Trust the team and provide them with all the required platforms so that they

can deliver value. The culture of servant leadership should be practiced in order to avoid

complex hierarchical structures that run through rigid processes.

�Agile Benefits
Predominantly, agile principles have been used effectively by development teams, and

immense benefits have been realized by leveraging these principles. Most projects in

the IT space and elsewhere are delivered using the agile approach. These principles

are now gaining traction in the IT operations segment where teams are practicing these

principles and are also adopting agile methodologies and values. There are four key agile

values that help in implementing the agile principles, as described in Table 3-1.

Chapter 3 Introduction to Agile and DevOps

35

�Scaling Agile with DevOps
As agile software development continues to scale, there is a need to extend these

principles with the operations teams as well. This is where DevOps comes to the

rescue. As said earlier, agile cannot run in a silo; it needs to be scaled. Applications

need infrastructure to run, and that’s where infrastructure and teams also need to

be encouraged to adopt and practice agile. The development and operations teams

together can accelerate the path to value creation and cost savings as product releases

are managed frequently.

�When to Adopt DevOps?
DevOps is using a combination of cultural philosophies, practices, and tools to increase

an organization’s ability to deliver applications and services at high velocity. When

aligned with agile, it improves team collaboration and productivity. Recent times have

resulted in many organizations revisiting how they work and encouraging teams to stay

Table 3-1.  Agile Values and Their Relevance

Agile Values Relevance Tools

Individuals and

interactions over process

and tools

• S elf-directed and empowered teams.

• �T eams perform and participate in the

product delivery decisions such as

estimation, scope, risks, etc.

• � Collaboration and

communication tools like

Microsoft Teams,

WebEx, etc.

Working software

over comprehensive

documentation

•  MVPs delivered in small sprints.

•  Focus on delivering value.

• �P hysical and virtual agile

boards

Customer collaboration

over contract negotiation

• � Flexible and adaptive on contractual

requirements.

• � Working with customers throughout

on the goal and definition of “done.”

• � Ceremonies such as

product demos

Responding to change

over following a plan

• � Continuous backlog refresh and

prioritization.

• S cale and adjust with changes.

• � Ceremonies such as sprint

planning, retrospections,

daily standups, etc.

Chapter 3 Introduction to Agile and DevOps

36

connected and leverage automation to the fullest. Product teams adopt DevOps when

they intend not only to connect the development and operations teams but also to look

out for integrating processes across the product lifecycle, which is possible by leveraging

processes, tools, and automation.

The journey of continuity is an important need for making DevOps successful. The

principles of DevOps bridge the gaps between siloed teams and leverage automation for

optimizing the processes that connect the entire lifecycle for the product. Each phase in

the lifecycle is driven with its own set of tools, processes, and teams. While CI and CD

paved the way for integrating in the application world, the elements in the infrastructure

world were still running in silos. A DevOps model integrates each phase and each tool,

streamlines the processes, and focuses on a common vision—“we build it, we run it.”

Adopting new tools, moving to the cloud, leveraging APIs, etc., have enabled teams to get

connected quickly and share common processes and workflows. And the core principle

lies in the belief that this is a continuous journey of improvements. See Figure 3-2.

Figure 3-2.  DevOps continuous journey

Chapter 3 Introduction to Agile and DevOps

37

�DevOps in the Product Lifecycle
Figure 3-3 shows the steps in the DevOps framework.

	 1.	 The Agile practices in business planning step establishes business

goals and adjusts them based on customer feedback, which

helps improve agility and business outcomes. This helps in

gaining the trust and confidence of the customers on the value

being delivered through the deliverables. This first phase in the

product lifecycle is a stepping-stone in building the product

journey correctly. With the right adoption of tools and techniques,

this phase becomes essential and integrated with other phases.

Conducting the right ceremonies, estimating and planning for

delivering faster, and embracing the culture of change within the

team all play a vital role. This phase is generally managed through

tools such as Atlassian Jira, Azure Boards, VersionOne, LeanKit,

etc. These tools are extended with other lifecycle tools to get end-

to-end traceability.

Figure 3-3.  DevOps framework

Chapter 3 Introduction to Agile and DevOps

38

	 2.	 Continuous integration is a practice in which software developers

frequently integrate their code in the codebase with the code of

the application where other team members also add their code.

This helps in the early detection of integration defects while

building the code, which if caught at a later stage will prove to

be expensive to remediate. Building a CI pipeline is a common

practice that is running across many organizations today and is a

de facto standard too. While this pipeline was implemented in the

application space, today it is applicable for building infra pipelines

too. Tools like Jenkins, TravisCI, CircleCI, TeamCity, etc., are all

well-known tools that orchestrate the key steps, from building

the code to delivering the executables/binaries. A complete CI

pipeline comprises source code management, build execution,

unit testing, code coverage, and artifact/binary deployment.

	 3.	 The environment build focuses on instant infrastructure

provisioning by adopting runbook automation, configuration

management tools, and self-service catalogs. Automation in

this space helps to reduce IT sprawl. Building an environment

comprises various activities such as provisioning and configuring

infrastructure, preparing runbook automation, performing and

automating security scans, and integrating infra pipelines with

ITSM tools. In successive sections, we will be covering examples

on how CI is implemented in application and infrastructure space

and how are they are integrated.

	 4.	 The continuous delivery practice focuses on releasing the

product across different environments. A well-defined release

and deployment process ensures timely delivery of a quality

product. Every stage in deployment passes through a series of

quality checks. After its success, it is then deployed in the target

environment. For example, if the CI build is successful, the CD

pipeline picks up binaries from the development environment

and deploys them into the test/QA environment. If the CI pipeline

is not successful, the deployment will not proceed. Similarly, if

the artifacts have to be transferred from the test/QA environment

to preproduction, Artifacts will require more quality gates such

Chapter 3 Introduction to Agile and DevOps

39

as percent coverage that is configured and accepted, security

score, etc. Tools such as Jenkins, Azure DevOps, GitHub Actions &

Runners, Atlassian Bamboo, etc., are good examples that perform

continuous deployment operations.

	 5.	 Continuous testing is a practice that means testing earlier and

continuously to detect defects early in the lifecycle, which will

result in reduced costs. This helps in establishing continuous

feedback on the quality of the product. Continuous testing can

be achieved by having your test cases automated and executed

with each code integration and build process. Testing scope

has expanded today, and it is not restricted just to functional,

performance, and security testing. As applications are moving

toward microservices-based architecture, addressing the growing

market needs of the customer base, the need for extended testing

has become essential including API testing, accessibility testing,

resiliency testing, etc. A few tools in this space are Selenium,

Appium, JMeter, HCL One Test Suite, etc.

	 6.	 The continuous monitoring and feedback practice involves

monitoring applications and infrastructure across all phases

and also acknowledging feedback from customers. This will help

to lay out actions to optimize and improve the application and

thus enhance customer experience and value. Every incident or

problem with the deployed application is closely monitored and

addressed with agility. ITSM tools like ServiceNow, Remedy, etc.,

come to the rescue in this space.

So, we have agile principles and a DevOps-connected model that enables

organizations to work closely and move faster.

�Summary
Agile and DevOps complement each other, but they should not be considered as

replacements for each other. On one hand, if agile focuses on iterative development

with continuous feedback principles, DevOps focuses on bringing teams together

that collaborate with each other and plan for a continuous journey of improvements.

Chapter 3 Introduction to Agile and DevOps

40

Organizations that practice agile easily transition and extend into a DevOps working

model. IT teams that practice agile and DevOps reap long-term benefits such as the

following:

•	 Collaborative and self-organized teams

•	 Embracing change through trust and transparency

•	 Faster time to market with automation

•	 Continuously improving with feedback loops

•	 Simplified processes and integrated workflows

•	 Lower costs

•	 Higher customer satisfaction scores

•	 Better business alignment

Let’s next look at the key factors that are accelerating the transformation of

infrastructure operations to agile.

Chapter 3 Introduction to Agile and DevOps

41
© Navin Sabharwal, Raminder Rathore, and Udita Agrawal 2022
N. Sabharwal et al., Hands-On Guide to AgileOps, https://doi.org/10.1007/978-1-4842-7505-4_4

CHAPTER 4

Factors Leading to
Agile Operations
In this chapter, we will be discussing the shift toward agile and microservices,

deployments, and how continuous testing happens at various levels. The topics you’ll

learn about in this chapter are as follows:

•	 The shift toward agile

•	 The benefits of agility

•	 Cloud computing

•	 Microservices architecture

•	 Deployment patterns and automation

•	 Shift-left testing

•	 Changes in architecture impacting operations

Digital organizations are adopting agile operations these days since it has become

a necessity. In a May 2021 survey by McKinsey (https://www.mckinsey.com/

business-functions/organization/our-insights/the-impact-of-agility-how-to-

shape-your-organization-to-compete), it was observed that highly successful agile

transformations resulted in 30 percent of operational performance that was driven by

continuous improvements and removing hand-overs. The survey also measured the

agile operating maturity model (for the 2,190 respondents) and its business impact.

About 10 percent of the entire sample was driving successful agile transformation

wherein agility was driven at scale to create value. The survey also revealed that agile

transformation is now becoming a mainstream topic of interest.

https://doi.org/10.1007/978-1-4842-7505-4_4#DOI
https://www.mckinsey.com/business-functions/organization/our-insights/the-impact-of-agility-how-to-shape-your-organization-to-compete
https://www.mckinsey.com/business-functions/organization/our-insights/the-impact-of-agility-how-to-shape-your-organization-to-compete
https://www.mckinsey.com/business-functions/organization/our-insights/the-impact-of-agility-how-to-shape-your-organization-to-compete

42

There have been similar surveys conducted across different geographies and

industries, and they indicate that operating models are getting transformed. But this did

not happen overnight. Emerging platforms like the cloud and new software development

models like microservices contributed to the need for an agile approach to business. The

demand for agility, resiliency, cohesive teams, secured environments, quick turnaround

times, digitalization, intelligent automation, and end-to-end integration served as

motivators for infrastructure operations teams to adopt agile. See Figure 4-1.

It is true that the vision for an operations teams is to ensure that systems are stable.

Traditional ways of working were good until now, but these norms are now set to

change in a way that meets and sustains the needs of digital businesses. So, the need

of the hour is to shift from traditional ways of operations to agile operations. While the

vision remains the same, the underlying ways of working must be transformed. This

creates a demand for upskilling our teams as well as introducing and adopting agility

Figure 4-1.  Common challenges faced with traditional operations

Chapter 4 Factors Leading to Agile Operations

43

and automation for delivering infrastructure services. A milestone-based roadmap will

enable organizations to transform from traditional to agile operations. These milestones

will include elements of modern technologies like the cloud, serverless computing,

or people aspects including building cross- functional teams, creating site reliability

engineering (SRE) teams, bringing in observability and automation, and empowering

teams with self-service catalogs, which can be consumed through catalogs and APIs.

These changes will impact both the “Run the Business” and “Change the Business” parts

of IT shown in Figure 4-2.

�The Shift Toward Agile
The shift from traditional IT operations to agile operations needs to be well-planned and

should be re-assessed regularly to measure the adoption rate. It also needs to be tracked

on the people, process, and automation fronts. Let’s look at some of the key differences

between traditional and agile IT operations; see Table 4-1.

Figure 4-2.  Sample “Run the Business” and “Change the Business” plan toward
cloud adoption

Chapter 4 Factors Leading to Agile Operations

44

The transition from traditional to agile is successful in organizations when it

has been done in a planned and phased manner. While organizations mentor their

operations teams in agile techniques, they are also implementing infrastructure as code

and observability technologies. This helps teams to standardize their infrastructure

setups as well as restrict any manual intervention; now most of the operations are either

fully automated or augmented with automation. Implementing automated systems

helps the operations teams to adhere to security and compliance standards.

�Benefits That Come with Agility
Working in an agile mode comes with a set of benefits and no side effects. Teams may

take some time to adopt and scale, but in the long run, organizations will reap the

benefits of adopting agile. Take a look at some of the key benefits that one can derive by

implementing the four agile principles (see Figure 4-3).

Table 4-1.  Comparison of Traditional IT Ops and Agile IT Ops

Area Traditional IT Ops Agile IT Ops

People Dedicated teams per

function/technology

Cross-skilled teams across the

function/ technology

Development and ops teams work

independently and work as siloed teams

Development and ops teams closely work

together and work as integrated teams

Process Rigid processes with multiple handoffs Streamlined processes with limited

hand-offs possible with automation

Incident/ticket-driven approach

dependent on manual intervention

Self-service mode of operations

Tools and
automation

Limited or siloed automation Standardized automation framework to

drive IT delivery

Delivering customized infrastructure is

time-consuming

Provisioning made faster by infrastructure

as code

Siloed monitoring tools leveraged to

scan applications and infrastructure

Integrated and optimized toolset to monitor

infrastructure and applications

Multiple dashboards to track and manage

infrastructure services and security

Integrated dashboard with autoremediation

capabilities

Chapter 4 Factors Leading to Agile Operations

45

An important thing to note is that shifting to agile ways of working demands

mentoring and coaching for the teams. While automated tools will bring in immediate

benefits of self-service and autoremediation, the focus is to streamline the processes

and empower teams. So, while agility is helpful, organizations need to look at building

a strong service portfolio. This is needed to address emerging technologies such as

containers, the cloud, etc. Let’s take a look at some of the technology disruptions that

have motivated organizations to drive agility across their ecosystem including the

infrastructure operations.

�Cloud Computing
Cloud computing as a term includes different types of services including infrastructure

as a service (IaaS), platform as a service (PaaS), software as a service (SaaS), containers

as a service (CaaS), and functions as a service (FaaS). The different offerings have very

different needs for monitoring, management, and administration. As you progress from

infrastructure as a service to SaaS, the responsibilities of the customer to manage the

environment are reduced as the underlying layers are then fully managed automatically

by the cloud provider. If you are using Gmail, which is a SaaS offering from Google, you

do not need to manage the infrastructure or the application running Gmail; you just

consume it as a consumer since all the underlying infrastructure and applications are

managed by Google for you. If you were hosting your own email servers using Microsoft

Exchange, then the entire infrastructure and the Microsoft Exchange platform would

Figure 4-3.  Benefits with agile InfraOps

Chapter 4 Factors Leading to Agile Operations

46

need to be managed by you. SaaS adoption in the email space has actually made on-

premises Microsoft Exchange type of deployments negligible because organizations

have moved to SaaS. Let’s look at the three primary models of cloud computing in more

detail, as shown in Figure 4-4.

�Infrastructure as a Service
In IaaS, the cloud provider provides users with access to computing resources such

as servers, storage, and networking. Organizations use their own platforms and

applications on top of this infrastructure and manage the operating system and layers

above it.

IaaS Features

•	 Customers do not need to lease datacenters, buy hardware for

networking and compute and storage, or integrate all of these

elements. The cloud provider provides all these to the customer on

pay-per-use basis. The customer gets the ability to scale up and down

based on the requirements.

•	 The customer is saved the work of planning, procuring, installing,

and running the infrastructure.

Figure 4-4.  Cloud computing models

Chapter 4 Factors Leading to Agile Operations

47

•	 Since the compute infrastructure is automatically managed by the

cloud provider, activities like hands and feet support, datacenter

cabling, and networking and hardware failure incidents are no longer

required to be handled by the customer’s support teams.

�Platform as a Service
In PaaS, the cloud provider provides users with a cloud environment where they can

develop, deploy, and manage applications without worrying about the infrastructure as

well as the platform components. In addition to services provided in IaaS, PaaS provides

the operating system, platform abstraction, and automatic management of these

components so that the customer can just focus on the application code.

PaaS Features

•	 The PaaS platform provides a platform for hosting applications

and databases; it also provides tools to develop, test, and deploy

applications.

•	 The cloud provider manages the operating system, database,

middleware, or other platforms that are offered as a service along

with the infrastructure components and security, backup, etc.

•	 The PaaS platform frees up the resources from customer

administration teams and reduces the work involved in configuring

and managing access and security for these services using simple

and intuitive screens with very less management and monitoring

overhead.

•	 The administration activities of operating system administrators,

database admins, middleware, and platform admins are mostly

automated and delivered by the cloud provider.

�Software as a Service
In SaaS, the cloud provider provides users with access to a fully functional application

running on the cloud. Users can authenticate and start using the application on the

cloud platform. SaaS could be simple applications like email or collaboration clients or

complex business applications like ERP solutions.

Chapter 4 Factors Leading to Agile Operations

48

SaaS Features

•	 The entire application is provided to users with a subscription pay-

per-use model.

•	 Since the infrastructure and platform are abstracted, the users don’t

need to install, configure, or manage these components. In addition,

since the application is also provided by the cloud provider, the

customer doesn’t need to develop, deploy, upgrade, or manage the

application.

•	 The customer can consume the application from various locations,

can manage the users and access, and can provide mapping for roles

and users so that the authenticated and authorized users can access

the required features of the application.

•	 SaaS manages the scaling of the underlying components like the

infrastructure and platform to provide SLA-based availability and

response to the users.

•	 This model involves the least management overhead since almost

everything from the infrastructure to the platform to the application

development and deployment are delivered by the cloud provider.

The application development as well as the operations work are

eliminated in this model since a fully functioning application is

provided to business and functional users to consume.

Thus, from an agile infrastructure operations perspective, while planning operations

teams and processes, one needs to consider the various offerings available from cloud

providers. The skills required to manage the environment changes drastically in the

different models of consumption. As a customer moves to consuming more SaaS and

PaaS environments, the role of infrastructure operations diminishes since the layers are

delivered automatically by the cloud provider.

Earlier, infrastructure operations had technical challenges, and the infrastructure

cloud computing offerings were not available. Thus, it meant a lengthy process of

procuring, installing, configuring, and testing these systems was necessary. Any

new application portfolio was taken up as a project that involved teams from the IT

infrastructure, procurement, security, facilities, and application teams. Even within IT

Chapter 4 Factors Leading to Agile Operations

49

infrastructure, there were many elements to be considered while setting up a datacenter,

such as selecting a colocation facility to host your datacenter and network, storage,

compute, and virtualization systems along with connectivity and security appliances.

There was also additional complexity involved in ensuring that all these systems from

different vendors were compatible with each other, and the integrations needed to be

tested before the infrastructure can be made available to the application teams.

All these technical limitations necessitated detailed granular planning rather than

iterative implementation as changing anything later would involve a lengthy process

of selecting the product, procuring it, and getting it physically delivered and installed,

which took weeks. As an example, if there was a design change to reflect higher

availability components, you needed two HBA cards, and if you had ordered one HBA

card for your compute devices, then you had to order a physical card that would then

be procured and shipped by the hardware vendor. Similarly, any changes on network

equipment or storage equipment would mean procurement, shipping, and physical

implementation of the hardware. To avoid such issues, the IT infrastructure teams

evolved processes and systems that required robust and granular planning to ensure

nothing was missed in projects. Any changes to the IT infrastructure once deployed

would also go through a detailed planning and change control process since there

were so many components working in tandem to provide the IT infrastructure, and any

change in configuration in one may impact the integration. Thus, the agile processes that

got readily embraced for software development were not feasible in the pre-cloud era

because IT infrastructure dealt with physical infrastructure elements and there were too

many integrations to take care of.

With the advent of cloud computing, all this changed. Infrastructure became

programmable through APIs, and the integration of components was guaranteed to

work by the cloud provider since the abstraction layer of the control plane and cloud

management software from the cloud vendor handled all these aspects. See Figure 4-5.

Chapter 4 Factors Leading to Agile Operations

50

Extensive planning to calculate capacity for your environment was no longer needed

as any additional capacity could be easily spun up in the cloud environment on demand.

The changes in the technology landscape brought about by cloud computing

fundamentally changed the way IT infrastructure was designed, implemented, and

consumed. The processes and systems that were set up over decades for IT infrastructure

would now need to change because the technology disruption brought about by the

cloud changed the game.

Cloud computing brought standardization of environments, configurations,

integrations, and best practices. Unlike the past where everyone had to figure out

their own best practices, controls, and standards, cloud providers provided best

practices, use cases, and standardized architectures that could be used out of the box.

The most challenging aspects on networks—setting up the hardware, virtualization

software, perimeter security, and security devices—were all available now with the

click of a button in the cloud environment. Even if you missed something in the

design, you could quickly incorporate changes into the environment unlike in the

past. Another fundamental change that took place with cloud computing was the

fact that infrastructure became programmable, which meant that the application

Figure 4-5.  On-premises versus cloud computing types

Chapter 4 Factors Leading to Agile Operations

51

development teams could use infrastructure elements through code and spin up and

down environments through their CI/CD tools and reduce the dependency on the

infrastructure operations teams. However, this would mean that soon every application

team would have their own cloud environments with the provider of their choice using

technologies that they wanted to consume, and there would be no standardization

across the organization on the infrastructure and cloud environments.

Since you can consume as much as you want on the cloud environment, there were

scenarios where application teams could spin up the environment or use infrastructure

and run up cloud computing bills without budgetary and governance controls. Security,

compliance, governance, and FinOps disciplines are needed from a cloud computing

perspective to ensure that the cloud utilization by the application and infrastructure

teams is done in a controlled and secure manner, not in a free-for-all model where

application teams could do whatever they want.

Thus, the role of infrastructure teams needed to change in response to the

technology disruption brought about by cloud infrastructure.

�Microservice Architecture
The new digital and cloud applications are being developed using microservice

architecture and running on container management platforms like Kubernetes.

Kubernetes has become the most popular open source platform for container

orchestration. The container orchestration platform automates the container’s lifecycle,

from deployment to retirement. The application deployment on the container platform

happens through configuration files and can be automated using deployment tools.

The Kubernetes infrastructure is built on top of a cluster that is a set of machines;

these can be physical or virtual machines and are called nodes. Workloads/applications

are deployed onto a cluster. The master node controls the set of worker nodes and

provides the management plane functionality. This includes the API server and other

components that manage the nodes.

In the Kubernetes architecture, a pod is a logical collection of one or more containers

that can be spread across multiple nodes as well. A pod packages application containers,

storage, network, and other configurations required for running the containers. A pod

can horizontally scale out, which means that the application component as part of

the pod also scales out. This makes the microservices applications more scalable. See

Figure 4-6.

Chapter 4 Factors Leading to Agile Operations

52

The advent of microservices architecture and container-based infrastructure poses

new challenges for agile operations and DevOps. In the pre-cloud and container era,

the infrastructure development and application development were dependent on

each other. DevOps emerged as a discipline to bridge the gap between the application

development and operations teams. Though DevOps solved the problem from a people

and process perspective, the technology aspect was still a challenge. An application

deployed into production might have faced issues because the configuration of a

production deployment was different than the development or test deployment or some

small change in the infrastructure configuration resulted in application availability

or performance issues. The other challenge was that the infrastructure and operating

systems needed patching and updates every now and then. As an example, for Microsoft

Windows, a monthly patch cycle is needed. When servers and infrastructure are patched,

it may result in issues in application that require extensive collaboration and testing

between the development and operations teams. This led to the discovery of deployment

patterns, mostly supported through automation.

Figure 4-6.  Kubernetes sample architecture

Chapter 4 Factors Leading to Agile Operations

53

�Deployment Patterns and Automation
Traditionally, when an application was ready for deployment, it was tossed to the

application operations and infrastructure teams for deployment in the production system.

A dedicated time schedule was set, and the identified teams joined the implementation.

As organizations moved to the cloud and adopted a microservices-based architecture,

developers got access to cloud-native tools that allowed them to think beyond development.

The modern tools allowed developers to architect their application deployment using

several descriptive templates (most of them running in YAML formats). Additionally, they

got access to templates available for setting up core infrastructure elements like VMs, load

balancers, scaling groups, etc. So, developers who were earlier focusing only on continuous

integration (CI) using tools like Jenkins, etc., extended their CI pipeline to perform

continuous delivery, which included moving artifacts from one environment to another

(such as picking binaries from the development environment and deploying them to the

QA environment). Later, as the CI and CD processes matured, these developers were able to

automate the deployment of application until production. This process is called continuous

delivery (CD). In some cases, new production environments are also set up through the

automated pipeline. See Figure 4-7.

With more and more automation, organizations demanded zero or minimal

downtime. This was made possible through various deployment patterns that were

built using tools like Jenkins X, Spinnaker, etc. Let’s look at some of the commonly used

patterns.

Figure 4-7.  Continuous delivery versus continuous deployment

Chapter 4 Factors Leading to Agile Operations

54

�Blue-Green Deployments
This deployment strategy has two production instances called blue and green that

are isolated from each other. It is the blue production instance that receives traffic.

Whenever a new application release is to be done, first that new version is deployed

on the green production instance and tested. If this instance passes the test criteria,

only then does this green instance get promoted to receive traffic and become the blue

instance; then the earlier one gets renamed as green. See Figure 4-8.

�Rolling Updates
The rolling updates deployment strategy is also known as a ramped deployment strategy.

The key idea is to roll out new application instances by replacing the older versions.

This approach takes care of issues related to long-running transactions while rolling out

the new releases. The older instances are replaced with newer instances in a phased

manner. See Figure 4-9.

Figure 4-8.  Blue-green deployment strategy

Chapter 4 Factors Leading to Agile Operations

55

�Canary Deployments
The canary deployment strategy, also known as incremental deployment, is like blue-green

deployments except for the fact that the traffic to the new application version is directed

slowly instead of a sudden cutover. This approach is excellent when teams are performing

A/B testing. See Figure 4-10.

Figure 4-9.  Rolling deployment strategy

Figure 4-10.  Canary deployment strategy

Chapter 4 Factors Leading to Agile Operations

56

All these deployment patterns are easily doable through automation tools and

reusable templates. Each of these is well tested through automation test frameworks

accompanied by testing tools. Let’s walk through the advancements in testing

applications and infrastructure through the delivery pipeline. See Figure 4-11.

�Shift-Left Testing
Like traditional development, testing often was initiated after the development. While

developers performed some form of unit testing, QAs or testers performed functional

and performance testing but with limited test scenarios. With the growing demand

for microservices, the need for supporting dozens of platforms, and the need to

quickly deploy applications, testing had to be modernized. Testing has to be practiced

continuously and to be pushed to the left in the development cycle. Product teams are

aimed at preventing bugs proactively instead of finding them reactively. See Figure 4-12.

Figure 4-11.  Did you know?

Chapter 4 Factors Leading to Agile Operations

57

To address the demand, new tools have been invented with more focus on delivering

quality code. Product teams pay more attention to technical debt, code, and test

coverage. This has paved the way for agile testing and has introduced various forms

of testing. Testing is now not restricted to QAs/testers. Instead, business analysts,

developers, and everyone on the product team are responsible for ensuring that the

product is of high quality with no room for bugs or security loopholes. Let’s take a look at

the key testing forms that are being practiced across the testing lifecycle of products. See

Figure 4-13.

Figure 4-12.  Traditional versus modern testing methodology

Figure 4-13.  Different types of testing

Chapter 4 Factors Leading to Agile Operations

58

BDD Testing with Unit Testing: This is a testing strategy known as behavior-driven

development testing. It is an extension to test-driven development (TDD) that focuses

on creating or developing features that meet the stated goals. This type of testing is often

integrated with unit tests. The tests are written in the Gherkin format (“given, when,

then” format) and are associated with the user stories and written in the early phases.

Tools like Cucumber support BDD and enable business analysts to write effective

BDD/acceptance tests that are readable and can get easily tested against the expected

behavior. See Figure 4-14.

Unit testing, at times called white-box testing, is where the developers test each

functionality that they have coded. The unit tests are easily built once the BDD tests are

defined. Developers leverage a number of frameworks like JUnit, Nunit, PyUnit, etc., to

construct unit test cases and identify code that needs to be refactored.

�Static Code Analysis
This type of testing is performed to analyze the quality of code written against a set of

predefined rules or standards. Commonly used tools like HCL AppScan, SonarQube,

Coverity, etc., enable developers to integrate static code analysis with the application

build. These tools generate dashboards that reflect code complexity, code coverage,

percentage of duplicates, overcomplicated expressions, and technical debt. See

Figure 4-15.

Figure 4-14.  BDD testing

Chapter 4 Factors Leading to Agile Operations

59

�Infrastructure Testing
Infrastructure testing verifies whether the application works with the intended hardware

and network. The aim is to test the infrastructure between different environments

whenever the new software is ready for deployment. This helps to mitigate risks during

migration and production movement of workloads. This type of testing is also performed

when infrastructure-related activities are to be performed such as patching, addition

of new devices, etc. Various methodologies are available that enable product teams to

perform infrastructure testing such as client-server infrastructure testing, network-level

testing, cloud testing, etc. See Figure 4-16.

Figure 4-15.  Static code analysis with SonarQube, Dashboard view

Chapter 4 Factors Leading to Agile Operations

60

�Smoke Testing
Smoke tests are generally used in integration, system, and acceptance testing where

major product functions are tested randomly but are not covered in depth. The intention

is to test if the software deployed is running or not. Hence, it is also known as confidence

testing or build verification testing. This testing is performed by the QA testers when

the application is released to the QA/test environment, and the process can be manual

or can be automated. If these smoke tests pass, then the QA testers may proceed to

functional and resiliency testing and, in the case of failures, notify the development team

that the build has failed. See Figure 4-17.

Figure 4-16.  Examples of infrastructure testing

Chapter 4 Factors Leading to Agile Operations

61

�Functional and Performance Testing
This form of testing has been in practice for quite a long time where QA testers test

the application against its functionalities and performance. This is known as black-

box testing. This is a type of testing is where the QA department has no clue on how

the application has been developed. The testers have a list of test scenarios and test

cases that are executed either manually or using automated tools, and the results are

specified as pass or fail. Commercial tools such as HCL’s OneTest (an integrated suite

for functional, performance, service virtualization, and API testing), HP UFT (unified

functional testing), HP LoadRunner, or open source tools like Selenium, JMeter, etc., are

commonly used. See Figure 4-18.

Figure 4-17.  Smoke testing workflow

Chapter 4 Factors Leading to Agile Operations

62

�Security Testing
This testing category uncovers vulnerabilities in the system and determines that the

data and resources of the system are protected from possible breaches. It focuses on

finding all the possible loopholes and weaknesses of the system that could lead to loss of

information. It also ensures that the system is free from threats or risks, which can cause

data loss. With the increase in digitalization, organizations have seen a rise in security

threats and hence are investing in various software solutions that proactively scan for

such threats and provide these vulnerabilities to the teams on time. There are different

forms of security testing that are performed at various levels by different specialists

to ensure that the product getting released is tested well, and when it goes live, it

continues to monitor the system as well. Tools such as Nessus, HCL AppScan, Qualys,

Veracode, etc., are some of the commonly used tools in this space. In fact, this type

of testing is introduced in infrastructure as code pipelines wherein security scans are

automated to avoid manual checks. For example, the image hardening process requires

a compliance check, a process wherein organizations harden a VM image comprising

the organization’s compliance ruleset. This is done since organizations do not allow the

use of VM images directly from the Internet in order to avoid any security issues; this

can easily be automated using the existing security tools. If all goes well and the pipeline

gets an approval from the security team, the image is moved to a shared gallery, which is

accessible to everyone within the organization. See Figure 4-19.

Figure 4-18.  Developing performance testing suites

Chapter 4 Factors Leading to Agile Operations

63

�User Acceptance Testing
User acceptance testing (UAT) is another form of testing that is performed by end users.

This is done just before the actual launch in production. The actual users are given

access to the new setup to verify the application functionality based on their real-world

scenarios. A UAT environment is made ready for the end users to perform this testing

with the new application version. The UAT testers have their own set of test cases that are

executed in this environment, and the results are recorded. If the user acceptance tests

pass, then the end users or the customers provide sign-off for the actual deployment in

production; otherwise, the product team is notified for taking steps to improvise. See

Figure 4-20.

Figure 4-19.  Security testing types

Figure 4-20.  UAT testing phases

Chapter 4 Factors Leading to Agile Operations

64

�Chaos Testing
A new form of testing was conceptualized by Netflix in 2011 through its testing tool called

Chaos Monkey. The aim of this testing was to test infrastructure resiliency. This helps

teams to check whether their existing infrastructure can scale and recover in case of

any failures. The concept relies on proactive identification of issues so that outages can

be avoided. This testing type is also termed chaos engineering, and there are a number

of tools available that enable teams to introduce chaos in the system and monitor the

behavior. Such an analysis helps teams to build better systems. See Figure 4-21.

�A/B Testing
Also known as bucket testing or split-run testing, A/B testing is a random experiment done

on two variants of the application. The term A refers to the control or original variant, and

the term B refers to the new variation. The version that indicates a positive business impact

will be the actual winner. This enables product teams to optimize their web application

or websites and increase ROI. Thus, using statistical data, teams analyze the performance

Figure 4-21.  Chaos engineering/testing

Chapter 4 Factors Leading to Agile Operations

65

of their website and define ways to optimize it based on visitor behavior. As a simplistic

example, if 50 percent of visitors visit the variant and this A percent derives more sales than

the other variant, then variant A is the winner. See Figure 4-22.

Ideally, product teams should practice testing at all levels right from the product

inception. There are tools available that automate these testing categories, which speeds

up agile development. Even in infrastructure as code, teams develop scripts, leverage

coding guidelines, check for technical debt, and automate whatever comes their way to

enable faster time to delivery.

�Changes in Architecture Impacting Operations
Another aspect that has led to the need for agile operations is the change in common

architectures. To handle configuration changes, the infrastructure and platform world

has moved to a model of idempotency. Simply put, it is an operation that produces

the same result no matter how many times it is performed. In this model, tools like

Puppet and Chef produced configurations created in scripts that are applied on the

servers and endpoints. If any change was made to the configuration at an individual

server level or endpoint that is not authorized or initiated through the configuration

management tool, the tools agent would simply revert the configuration to the desired

Figure 4-22.  A/B testing

Chapter 4 Factors Leading to Agile Operations

66

state that was assigned to that server based on the role that the server may be performing

in the architecture. Thus, a web server role has a desired state configuration, and it

won’t change unless the desired state configuration is modified for that role through

the configuration management tool. This greatly reduces the incidents arising out of

misconfigurations or configuration conflicts between development and production

systems. This also brings in standardization so the operations team will know what to

expect for the configuration of a particular server. Changes to configuration become

simpler and automated, and incidents due to changes are drastically reduced in this

model. However, one still needs to maintain the desired state configurations and keep

the servers updated based on the patching, security, and compliance needs.

With the advent of containerization and microservices, the concept of idempotency

has given way to the concept of immutable infrastructure. Immutable infrastructure simply

means infrastructure that does not change, so you do not update or upgrade the containers

but rather shut them down when there is an update and bring the other containers up.

With orchestration and automation coupled with DevOps practices, you can release using

a canary deployment or blue-green deployment, and this model becomes easy to use

without the overhead of managing the configurations. Containers can be spun up and

down in seconds, whereas virtual machines would take a few minutes to boot up. The

containers are lightweight and do not carry the overhead of the entire operating system

and thus enable the realization of the idea of immutable infrastructure.

Virtual machines are more like pets. Containers are more like cattle. We love our pets

and name them and maintain them, and we have a long-term relationship with our pets.

This is synonymous with the virtual machines and idempotent infrastructure, which

needs to be maintained, kept up-to-date, and the instances kept live for a long time. While

containers are more like cattle, they are ephemeral. With containerization and the concepts

of agility, high availability, and scalability, the application development and deployment

models are rapidly moving toward a “cattle” mindset from a “pet” mindset. A container

image is just replaced with a new updated image rather than updating the older images.

Another important aspect that has implications for agile operations is that the

container-based applications and architectures are easily portable across cloud

environments since they are delinked from the underlying infrastructure components.

An application currently deployed on AWS can be easily ported to Google Cloud or

Azure without requiring modifications. Thus, configuration dependencies that existed

between applications and infrastructure no longer exist in these models. Kubernetes’

excellent abstraction over the infrastructure means that infrastructure and development

teams can focus on their own areas of expertise.

Chapter 4 Factors Leading to Agile Operations

67

Thus, the infrastructure teams can focus on things like datacenter infrastructure,

network infrastructure, storage infrastructure, cloud infrastructure, cluster

infrastructure, capacity management, monitoring, disaster recovery, and security.

Application teams can focus on developing applications, building container images for

deployment and configuration, etc.

The dependencies and processes that existed earlier where the application teams

had to coordinate with different teams to get the job done and wait for infrastructure

and right configurations are suddenly gone in the new model. Infrastructure just exists

for the application teams behind the scenes to be orchestrated and controlled through

YAML scripts.

Thus, the roles and responsibilities of the application team and infrastructure team

have changed in the new model. Someone has to deploy the applications using manifest

files (YAML scripts usually) and manage new tools and technologies like Kubernetes,

Terraform, etc. There are various ways in which teams can be structured to accomplish

this end objective.

Mature organizations are moving to infrastructure as code where the configuration

of cloud and container environments are represented as scripts and entire cloud

environments can be created and destroyed with software code. The changes to the

infrastructure world are massive. From using GUI-based screens to writing configuration

and automation scripts, the role of the infrastructure administrator has been completely

transformed in the new model.

�Summary
While traditional operations were successful, the advent of the cloud, microservices, CI/

CD, shift-left testing, and infrastructure as code have forced organizations to move toward

agile operations. Infrastructure operations cannot live in silos; it has to collaborate and

change with new technologies. Agile frameworks that worked well in the development

space are being implemented in the infrastructure space too. Teams using ITSM are moving

toward agile ITSM frameworks. The transition to the new model is an important step that

organizations need to consider, plan, and execute so that no team in the new operating

structure is left behind. Before we understand how to get started and move toward agile

operations, we should first look at the different agile frameworks and methods.

Chapter 4 Factors Leading to Agile Operations

69
© Navin Sabharwal, Raminder Rathore, and Udita Agrawal 2022
N. Sabharwal et al., Hands-On Guide to AgileOps, https://doi.org/10.1007/978-1-4842-7505-4_5

CHAPTER 5

Introduction to Agile
Methods
In this chapter, we will discuss widely used agile methods in detail including best

practices, roles, artifacts, metrics, and ceremonies. The topics that will be covered in this

chapter are as follows:

•	 Scrum

•	 Kanban

•	 Scrumban

•	 Comparison of Scrum, Kanban, and scrumban

�Scrum
In the traditional infrastructure working model, the infrastructure team was in charge

of the operational tasks, which were all manual. These tasks were repetitive and

followed the same steps for their resolution every time. Environment building or

decommissioning activities were considered as projects that came as requirements

in a form of templates. Multiple meetings were required with stakeholders to finalize

the requirements. It took weeks to build the servers with all the required configuration

because different skills from individuals were required to complete their tasks and there

was not much coordination because people were part of different teams and each team

had its own set of priorities. Moreover, the requirements kept changing when a lot of

rework was needed. All kinds of planned activities were considered to be projects. There

was a need for faster delivery along with changing customer expectations.

In the new working model, infrastructure operations teams not only are caretakers of

the systems and environments but are also responsible for introducing automation and

streamlining processes for development teams. The requirements are called epics,

https://doi.org/10.1007/978-1-4842-7505-4_5#DOI

70

which are further broken down into user stories and tasks. There are planned,

streamlined meetings and set delivery patterns. Teams communicate more and are

closely connected. Moreover, entire teams work toward a common goal.

Scrum is a methodology that is well suited for teams that are working on “change the

business” (CTB) activities like infrastructure as code. The concept of infrastructure as

code (IaC) has been accepted in most organizations for more than a decade now, and it

has helped teams to do the following:

•	 Standardize the provisioning and decommissioning processes

•	 Track and control the environment builds

•	 Extend the infrastructure pipelines with development pipelines

•	 Leverage security standards

•	 Reduce time to market

�Adopting Scrum in IT Ops
The implementation of the Scrum process is similar to the way it is implemented in a

development project. Infrastructure teams that are accountable for automation need

to plan for its implementation from every perspective. A well-defined strategy that

encapsulates people, process, tools, and automation will ensure that the teams learn and

scale up quickly. See Table 5-1.

Table 5-1.  Pillars of Scrum

Perspective Inputs

People •  Mentor teams on the need for agile practices and their usage.

• � Identify and plan for new roles in the team (the Scrum team comprises a

product owner, a Scrum master, and the team).

Process • � Define the workflow for automating the processes of provisioning and

decommissioning.

•  Identify other infrastructure processes that can be automated.

Tools and
automation

• � Identify the tool to be used by the team for referring to stories, status,

increments, and feedback.

Chapter 5 Introduction to Agile Methods

71

�Getting Started with Scrum
The Scrum methodology is a generic framework that can be implemented easily

for product development teams as well as operations projects that are deploying

infrastructure as code or are automating standard operating procedures through

runbooks. The framework has defined roles, ceremonies, and responsibilities that foster

a culture of iterative development, trust, and transparency between team members.

Sometimes the infrastructure team designates a small team as the DevOps team whose

core goal is to strengthen automation and set up infrastructure as code that repeatedly

delivers functionalities in small sprints. The team works closely with the business and

important stakeholders who share requirements in the backlog that are assigned a

priority and that follow the regular agile product lifecycle. See Figure 5-1.

The framework runs in sprints and continuously delivers value.

•	 Product planning: This is the product backlog creation stage. The

product backlog is a queue of requirements that are shared by the

stakeholders. In this stage, the customer and stakeholders interact

with the product owner and share the requirements. In the agile

world, these are high-level requirements called themes or epics. The

product owner understands the asks and states the priority and

importance of these needs.

Figure 5-1.  Scrum model

Chapter 5 Introduction to Agile Methods

72

•	 Product backlog grooming: The sprint planning session is where the

team picks up the high-priority requirements, provides estimates,

and gets started on the sprint. The product owner reviews the

requirements with the Scrum team, including the Scrum master.

Also, they further details the high-level requirements or epics into

smaller units called stories.

•	 Sprint backlog: A sprint backlog is another requirements queue that

is a subset of the product backlog. At the end of the sprint planning

session, the stories are moved to the sprint backlog from the product

backlog. The team is assigned stories and meets daily to address the

progress.

•	 Task execution: Stories are requirements that are the smallest unit

that has to be implemented, and each story has one or more tasks

that state the activity or work to be done. Teams update their stories

on a regular basis.

•	 Daily meets: This is a daily meeting known as a standup meeting.

The Scrum master drives the sprint cycle and embraces changes and

addresses any team issues. Every day the team meets to share their

work status and discuss any risks or showstoppers.

•	 Sprint review: This is known as a sprint demo or review. At the end of

the sprint cycle, the work is demonstrated to the product owner, and

all the stakeholders’ feedback is collected and tracked. The outcome

of a sprint review meeting is a “go” or a “no-go” decision of the MVP

that is produced. These MVPs could be runbooks, scripts, SOPs, etc.

•	 Sprint retrospective: This is the last meeting of the sprint cycle where

the team meets again to study the cycle flow, the stories that were

completed and approved, the stories that could not be completed,

or the feedback that was shared by the relevant stakeholders. All the

lessons that were learned act as inputs for improvisation for the next

sprint cycle.

Let’s further detail the roles, artifacts, meetings, and practices that are important in

the Scrum model.

Chapter 5 Introduction to Agile Methods

73

�Scrum Roles
To implement the Scrum methodology in the infrastructure IT ops world, the following

roles are needed.

Product owner:

•	 One who creates, tracks, and manages the product backlog,

including the work items needed to drive the infrastructure setup,

infrastructure migration, cloud implementation, cloud migration,

infrastructure as code type of projects

•	 Empowered to make decisions for all customers and users

•	 Shields team from external influences

•	 Presents and explains product backlog to the team

Stakeholder:

•	 Collaborates and works with the product owner

•	 Provides input via the product owner to the team

•	 Provides a business view that helps the product owner to prioritize

the backlog

Scrum master:

•	 Responsible for maximizing team productivity

•	 Sets up and facilitates various Iteration meetings

•	 Shields team from external influences

•	 Removes barriers

Scrum team:

•	 Comprised of developers and testers

•	 Responsible for estimating and committing to work

•	 Self-organized and cross-functional

•	 Has full autonomy and authority to run a sprint

•	 Collaborates with product owner

Chapter 5 Introduction to Agile Methods

74

A typical Scrum team should be no more than eight to ten members. It is important

to right-size the team to ensure accountability and easy sprint tracking.

�Work Items
A work item can be visualized as a deliverable. Unlike in traditional development where

a requirement was analyzed, designed, architected, developed, tested, and deployed in

one go and followed the work breakdown structure (WBS), in the Scrum world the work

items are iteratively delivered and follow the hierarchy shown in Figure 5-2. So, an epic is

a big requirement that must be delivered. This is broken down to features and then further

to actual requirements called user stories, which are linked with tasks. While epics and

features can be spread over multiple sprints, stories and tasks are tied to a specific sprint.

�Backlogs
All epics are saved in a backlog. These epics and user stories are prioritized by product

owner. There are three backlogs: product backlog, release backlog, and sprint backlog.

A prioritized epic is pulled from the product backlog and is put into a release backlog,

which in turn will have features and user stories. The sprint backlog is the lowest level,

which is a backlog for the current sprint.

Epics and user stories stay in the backlog until they are prioritized and moved into the

release and sprint backlog as agreed on by the product owner and the team. Once we have

them in the release backlog, we start estimating on the delivery timelines. Story points are

assigned to the user stories, which are a measure of the amount of work that needs to be

done to accomplish the story. There are many ways of doing story point estimation such

as planning poker, T-shirt sizing, etc. We will cover these in detail in Chapter 8.

�Scrum Sprints
The first phase to start with in the Scrum project is the discovery phase. This is the phase

where project requirements get discussed and user stories are being written in parallel to

get an initial confirmation on them. After the discovery phase, the sprints get started.

Figure 5-2.  Sample requirement breakdown

Chapter 5 Introduction to Agile Methods

75

When we talk of sprints, it is a 3-4-3-week fixed iteration that has a sprint goal to

be achieved by the end of the sprint. You can also understand them as an iteration. In

a development team, each sprint could be delivering application functionalities like in

sprint 1 the goal may be to launch the basic cloud platform features and in sprint 2 the

goal may be to add new functionality like security and compliance on the cloud. So, with

subsequent sprints, the platform grows and offers more features and capabilities. The

question on which functionality goes first is answered by the product owner and the

stakeholders who are in constant touch with the customers. Compared to a development

team sprint delivery for infrastructure as code, the team will involve delivering the

infrastructure setup in iterations/sprints, like in sprint 1 the goal may be to autoprovision

test environments with the minimum specifications on a particular cloud. For sprint

2 the goal may be expanded to cover the autoprovisioning of test environments with

custom specifications on multiple clouds and so on. Thus, the idea is to deliver working

features that are well tested and deployed. Since infrastructure projects are different

than application projects, the size of the Scrum team and the duration of a sprint are

areas that may differ from the way application development teams are organized in

Scrum. Because of a lack of empirical data, it is prudent for organizations to take the

recommendations and tweak them to suit their needs based on the kind of projects

getting implemented. In general, the infrastructure as code type of projects will align

more or less to software development project sprint cycles and team sizes; however,

the more complex infrastructure projects may require tweaking of the team size, skills,

external expertise, and sprint cycle.

�Sprint Ceremonies
Each sprint has four ceremonies that it follows.

•	 The first ceremony is the sprint planning meeting. This is the meeting

where the sprint scope gets finalized. It defines which stories will

get picked up based on the total story points that the team can

accomplish based on its available bandwidth. The artifact that gets

defined in the meeting is a backlog, which lists the user stories for

the sprint. The product owner must be present along with the Scrum

master and team.

Chapter 5 Introduction to Agile Methods

76

•	 The second ceremony is the daily standup meeting. This is a daily

15-minute meeting where entire team participates and answers three

powerful questions: What did they accomplish yesterday? What

do they plan to do today? Do they have any blockers? This helps in

bringing transparency in the team and gives a sense of ownership

and motivation to achieve the sprint goal. The product owner need

not attend every day but can join in when needed. The Scrum master

and team participate in the meeting.

•	 The third ceremony is the sprint demo or sprint review. The sprint

product or increment is presented to the product owner by the team.

This is a time to get a feedback if the team could not get it earlier.

•	 The fourth and last ceremony is the sprint retrospective. This is a time

where the team reflects on what went well, what did not go well, what

could have been done better, and action items. This helps the team to

improve in the next sprint.

�Information Radiators
The way we track and control in other SDLC models, we do the same in agile as well.

Information radiators are used for tracking the status of the release and sprints. Let’s see

some of the useful information radiators:

•	 Scrum boards visually display the progress of the user stories and

tasks associated with the current sprint cycle. They are also used for

effective communication and collaboration and backlog and sprint

planning. See Figure 5-3.

Figure 5-3.  Scrum board sample template

Chapter 5 Introduction to Agile Methods

77

•	 Burndown charts are used to show work done versus work planned

daily. It communicates how many story points remain to be

completed. The team tracks story points in a burndown chart to

see if planned stories will be completed on schedule. It helps when

adjusting or planning any action that needs to be taken to meet the

sprint goal. See Figure 5-4.

•	 Burn-up charts tracks it from the other perspective, including how

many points have been completed against the goal. See Figure 5-5

and Figure 5-6.

Figure 5-4.  Burndown chart sample

Chapter 5 Introduction to Agile Methods

78

•	 Dashboards depicts all relevant information for the project as a

summary. Dashboards are created on an as-needed basis and

provide aggregated information and drill-down capabilities. They

display the current in-progress information of the project. See

Figure 5-7.

Figure 5-5.  Burn-up chart sample

Figure 5-6.  Sprint performance sample

Chapter 5 Introduction to Agile Methods

79

•	 A velocity chart depicts the velocity of the completed sprints. This

helps in capacity planning for the team. See Figure 5-8.

Figure 5-7.  Scrum board example

Chapter 5 Introduction to Agile Methods

80

Let’s now start with a simple example from infrastructure and cloud operations

of creating an infrastructure as code project for provisioning and decommissioning a

virtual machine.

Start with creating epics and user stories, which will need to be added to the product

backlog in JIRA. See Figure 5-9 and See Figure 5-10.

Figure 5-8.  Velocity chart example

Chapter 5 Introduction to Agile Methods

81

Figure 5-9.  Epic example

Figure 5-10.  Product backlog sample

Chapter 5 Introduction to Agile Methods

82

We now have the product backlog, so the next step is to define the sprint backlog

during the sprint planning meeting. See Figure 5-11.

Sprint 1 gets started, and the daily standup meetings are planned. As the sprint

progresses, the items will progress from TO DO to IN PROGRESS to TESTING to

DONE, which can be easily seen from the dashboard set up for the project, as shown in

Figure 5-12.

Sprint execution can be easily tracked using the dashboards that can be created in

JIRA. You can add multiple gadgets in the dashboard based on your project needs. See

Figure 5-13.

Figure 5-11.  Sprint backlog sample

Figure 5-12.  Active sprint snapshot

Chapter 5 Introduction to Agile Methods

83

Along with a dashboard, an information radiator burndown chart is used to track the

sprint.

�Best Practices in Scrum
Here are some best practices:

•	 Have a single prioritized product backlog that teams can pull the

epics and user stories from.

•	 Create separate product and sprint backlogs.

•	 Use common collaboration and communication tools between

teams. Tools that enable videoconferencing should be used to

establish face-to-face connections among global teams.

•	 Enable daily standup meetings and frequent collaboration.

•	 Information radiators like Scrum boards and burndown charts

should be used for better sprint tracking and control.

Figure 5-13.  Sample JIRA dashboard

Chapter 5 Introduction to Agile Methods

84

•	 Customer feedback loops should be enabled in each phase to enable

early feedback.

•	 Continuous testing should be embedded in the process for early

defect detection and to ensure a quality product.

•	 Automation and orchestration for the operations work to enable

faster, quality, and frequent iterations delivery to customers.

•	 Put metrics and maturity assessments in place to identify continuous

improvements in processes and delivery.

�Summary of Scrum
The agile Scrum processes can be tuned and used in the infrastructure and cloud

operations space where teams engineer infrastructure as code and run the deliverables

in a sprint fashion. This model of operations has enabled ops teams to work in short

sprints and deliver based on priority. Whether it is a network team that needs to upgrade

its global network or it’s a database team that needs to perform a patch in a phased

manner across all regions, Scrum principles can help such teams to switch from old-

school ways to modern ways to deliver quickly. Various tools are available in the open

source domain and as commercial offerings that can be leveraged to implement Scrum

and practice ceremonies such as standups, retros, demos, etc.

�Kanban
The word Kanban is a Japanese word that means a sign board. This concept was

practiced in manufacturing companies like Toyota Production in the 1940s, but its actual

implementation in the software industry started in the early 2000s. The key reason for

leveraging this methodology was the ability to visualize work items that could be in the

form of issues or change requests, etc. In comparison to Scrum, Kanban is an ideal fit

for day-to-day operational activities including incident resolution, problem detection,

service request fulfilment, etc. Since its inception, Kanban has been adopted by multiple

organizations and has also evolved with new practices and variations like scrumban

(which is a mix of Scrum and Kanban).

Chapter 5 Introduction to Agile Methods

85

Before we jump into the actual implementation of Kanban for operations teams, let’s

look at some of the key aspects of this framework.

•	 Customer ideas are consolidated in a queue or backlog that is

continuously churned by the team.

•	 The framework comprises three key roles that work together to

address issues, incidents, change requests, and defects. The request

manager interfaces with the customer and prioritizes the backlog

items.

•	 The flow manager works like a Scrum master with extended

responsibility to remove hurdles and support the team toward

smooth execution and on-time delivery.

•	 The team is a highly cross-skilled group that pulls work from the

backlog and moves it along.

•	 Each work item entering the system passes through various stages

that are depicted as swim lanes on the Kanban board.

•	 The main goal of using Kanban is to have real-time project visibility

that is driven by the team.

•	 The different stages on the board have limits defined that in turn let

the team see the workload and the needed capacity.

•	 The Kanban framework is good for operational teams that have cross-

skilled experts in the team.

•	 The framework also measures teams’ success through a few metrics

that are frequently visited, like cycle time, waiting time, throughput,

etc. See Figure 5-14.

Chapter 5 Introduction to Agile Methods

86

Let’s deep dive into the details of this framework.

�Kanban Roles
Here are the Kanban roles :

•	 The flow manager (in some teams it is also known as the service

delivery manager [SDM]) is a role that focuses on improving workflow

efficiencies. A flow manager ensures that the work keeps flowing,

and in case there is a road blocker, they work toward removing that

blocker. This role may sound similar to a Scrum master, but it is

more than that. In fact, the role is expected to not only track work

items but also offer help to team members, make policy checks, and

ensure targets are met on time with quality. This role has existed in

the traditional IT operations environment, so to upscale this role to

Figure 5-14.  Kanban model

Chapter 5 Introduction to Agile Methods

87

an agile environment, all that is needed is the right mentoring for

implementing Kanban with best practices. To summarize, the role of

a flow manager should target the following:

•	 Track work flowing in the system

•	 Remove blockers or risks

•	 Facilitate change and deliver in a timely manner

•	 Continuously improve and support the team

•	 The request manager (in some teams it is also known as the service

request manager [SRM]) is a role like the product owner role in the

Scrum methodology. This role manages the flow of work within

the team and drives discussions between different teams and

stakeholders. The key expectation this from role is to improve

customer interactions.

•	 Ordering work items in the flow

•	 Owning policies

•	 Ensuring governance

•	 Tracking risks

•	 Team

•	 Cross-skilled members

•	 Pull work from the workflow

•	 Each team limited to 15 members

In the infrastructure world, the roles of SRM and SDM already exist, but they

follow a rigid process. With a little mentoring on Kanban, these roles will become

flexible and will adopt new ways of working. In fact, the ideal situation is that

everyone in the team should become an SDM since the goals are to observe the

work flowing in, pick up work, and ensure that it is resolved quickly. This is the end

state where the team becomes self-driven and self-organized without the need for

governance and flow management.

Chapter 5 Introduction to Agile Methods

88

�Kanban Ceremonies
Similar to the Scrum method, Kanban teams also practice a few ceremonies that help

them to understand the plan, look at their progress, mitigate risks, and prioritize stories

as needed. See Table 5-2.

In addition to these ceremonies, teams that are building infrastructure as code have

a ceremony for demonstrating their MVP to stakeholders. If the demo is approved by

stakeholders, then the catalog item is moved to the production environment.

�Kanban Boards
The Kanban team visualizes its work through Kanban boards. These boards help teams

look at the work flowing in their stream and decide on appropriate actions. These boards

are like tables with defined columns wherein each column represents a state, like to-do,

in-progress, deploying, etc. Each state represented on the board is called a swim lane,

and it may have defined limits as well. For example, at any given time not more than

four issues can be in the deploying state. This is known as work-in-progress (WIP) limits.

These Kanban boards are an excellent medium to not only show project status but also

put a limit and ensure visibility on the capacity of the team to deliver on the number

of tasks/issues that are addressed in a specific timeframe. Figure 5-15 is an example

representing a typical infrastructure operations team that manages operating systems.

Each swim lane has a name and shows the issues underneath it. While these boards can

be manually drawn, tools like JIRA help teams to visualize these boards better. As teams

can view the board, they are encouraged to pull work and move them from one state to

another. See Figure 5-15.

Table 5-2.  Kanban Ceremonies

Ceremony Frequency Purpose

Iteration
planning

Monthly (2 to 3 hours) Review capacity, throughput, lead times

Story
prioritization

Weekly (1 to 2 hours) Revisit backlog and prioritize as per customer demands

Daily standups Daily (15 mins) Team connects on risks and plans for the day

Chapter 5 Introduction to Agile Methods

89

So, the Kanban methodology works on three key principles: visualizing work,

limiting work, and iteratively working to improve with self-sustaining teams.

�Kanban Metrics
Please refer commonly used metrics for Kanban in Table 5-3 and Figure 5-16.

Figure 5-15.  Kanban board sample

Table 5-3.  Kanban Metrics

Metric Description

Cycle time Time when the customer submits a request until it gets resolved

Lead time The actual time spent when the infrastructure IT team started working on that

ticket until it gets resolved

Throughput Number of work items completed per unit of time

Chapter 5 Introduction to Agile Methods

90

�Getting Started with Kanban
There are various tools that enable teams to practice Kanban. Atlassian JIRA is one

such commonly used tool that provides templates for implementing the Kanban

methodology. This tool can be installed and used as an on-premises solution or can be

used through the cloud offering.

The tool has user-friendly templates to practice Kanban. Each project created in JIRA

has the following specifications:

•	 Workflow

•	 Name

•	 Unique key/identifier

Every time a new project is created in JIRA, it prompts for the project template, the

workflow to be implemented, and the project name that has a key that is used to identify

tickets. See Figure 5-17.

Figure 5-16.  Lead versus cycle time in Kanban

Chapter 5 Introduction to Agile Methods

91

Each project template is associated with a workflow that defines the journey of a

ticket. As beginners, teams can leverage existing workflows, as shown in Figure 5-18, or

create a custom workflow that addresses their project needs.

Figure 5-17.  Creating a Kanban project in JIRA

Figure 5-18.  Kanban workflow in JIRA

Chapter 5 Introduction to Agile Methods

92

The workflow shown describes how a ticket will be placed in the backlog and then how

it moves to a different state by the team members. The states mentioned in the workflow

are Selected for Development, In Progress, and Done. These states are customizable and

can be set in for different issue types like in this case Bug, Task, Sub-task, Story, and Epic.

Once the workflow is selected, the next step is to give a name and an identifier to

the project. For example, if the project name is Custom-Kanban-Project, then the tool

automatically generates an identifier that is a three-letter abbreviation. This identifier is

something that gets tagged to each issue type. For example, stories written now in this

project will have story numbers appended with the key. If this were modified with a value

like OPS, then the story numbers would be generated as OPS-1, OPS-2, etc. See Figure 5-19.

It is important that a Kanban project creation is well thought through. If there is a need

for customizing the states, issue types, identifiers etc., then this should be done during

Kanban practices setup for the project.

Once the project is set up, the next important thing to set up is WIP limits. WIP limits

are defined as the team’s capacity to address a minimum and maximum number of tasks

at any given point in time. This helps teams to avoid overload across all the stages in the

life of a story or an issue. Based on your current team size, skillset, and working hours,

define the maximum limits for each of the swim lanes. Let’s study the process of how to

calculate WIP limits.

Steps for Defining WIP Limits

Let’s assume that we have created four swim lanes on the Kanban board named

Development, Review, Testing, and Deployment. We will set the WIP for each of these

four stages, which means finding the maximum number of issues or tickets that can be

Figure 5-19.  Naming Kanban projects in JIRA

Chapter 5 Introduction to Agile Methods

93

managed at each of these stages. Before we start with the process of calculating WIPs,

first let’s divide each stage into two sections that will depict a value-added (VA) activity

and non-value-added (NVA) activity.

A VA activity indicates actual work done, and an NVA activity refers to the

wait or delay times that occur during work execution. For example, let’s divide the

development stage into an NVA named “Ready for development” and a VA activity as “In

development.” The state “Ready for development” indicates a list of prerequisites to be

done before the actual development starts, and the state “In development” refers to the

actual development state. So, each stage in the lifecycle will have VAs and NVAs, and this

division will help us to estimate the right WIP. Divide each of the other stages as shown

in Table 5-4.

With this updated Kanban board, we will now proceed to estimate the WIP for all the

VA states. The formula for calculating WIP for a Kanban board is as follows:

WIP = Total Tasks * Time %

Prerequisite 1 is Total tasks = Team size / Efficiency => refers to the maximum number of tickets
that can stay on the board. This formula needs the team size (for our example we will consider it to
be five) and efficiency factor (which needs to be calculated, described as prerequisite 1).

Prerequisite 2 is Time % = [VA / Sum of VAs] * 100 => refers to the percentage of time spent
on VAs. To calculate this value, we need to find out the VA values for all the states (described as
prerequisite 2).

Table 5-4.  Activities Categorization in Kanban Stages

Development Review Testing Deployment

Ready for

development

In
development

Ready

for

review

Reviewing
stage

Ready

for

testing

In
testing

Ready for

deployment

Deployment
stage

VA activity

NVA activity

Chapter 5 Introduction to Agile Methods

94

Prerequisite 1: Total Tasks (Calculation Steps)

Step 1.1  Calculate the overall efficiency factor.

With the VAs and NVAs chalked out, we will calculate the number of tasks that an

engineer can address at the same time. For calculating this value, we need to first find

out the time spent for VA and NVA activities for all the four stages and later estimate the

efficiency value, which is calculated using this formula:

Efficiency = VA time / (VA time + NVA time)

The value for efficiency is made up of VA and NVA time values. Let’s break down this

formula into further steps and calculate the same for our example board.

Find VA and NVA values: Discuss with the team the average efforts spent across

all the eight swim lanes. For example, the team confirms that tickets in “Ready for

development” swim lane takes one day, but once it moves to the “In development” stage,

it needs three days. Document the efforts across all the other phases; Table 5-5 shows the

efforts estimated for all the stages as an example.

Sum up the total efforts for all the VAs and NVAs as follows:

Time spent for VA activities from all phases = 3 + 0.5 + 1 + 0.5 = 5 days

Time spent for NVA activities from all phases= 1 + 0.5 + 0.5 + 1 = 3 days

Table 5-5.  VA and NVA Activity Efforts in Kanban Stages

Development Review Testing Deployment

Ready for

development

In
development

Ready

for

review

Reviewing
stage

Ready

for

testing

In
testing

Ready for

deployment

Deployment
stage

1 day 3 days 0.5 days 0.5 days 0.5

days

1 day 0.5 days 0.5 days

VA activity

NVA activity

Chapter 5 Introduction to Agile Methods

95

Now, we will find out the efficiency value, as shown here:

Efficiency = VA / (VA + NVA) => 5 / (5 + 3) => .62

Efficiency % = .62 * 100 => 62%

This value is an indication for the number of tasks that an engineer can have at the

same time on the board. A board with 100 percent efficiency will indicate that there are no

waiting times, and an engineer focuses on only one issue at a time (an ideal situation).

Step 1.2  Calculate the total tasks.

Now, we know the team size value and have found the efficiency value too. We will now

calculate the total task value (the first part of the WIP formula). This is calculated as follows:

Total tasks = Team size / Efficiency

Total tasks = 5 / .62 = ~8 tasks.

This means that our Kanban board at any given time can have approximately eight

tasks, which can be spread across different swim lanes, or stages.

Prerequisite 2 - Time% (Calculation)

Step 2.1  Estimate the time percentage for all the VAs.

To calculate time percentage for all VA activities for each stage we need to use the

following formula:

Time % = [VA / Sum of VAs] * 100

We will estimate this value for all the VAs as shown in Table 5-6.

Table 5-6.  Time % Calculation for VA Activities in Kanban Stages

Development Review Testing Deployment

Ready for

development

In
development

Ready for

review

Reviewing
stage

Ready for

testing

In
testing

Ready for

deployment

Deployment
stage

1 day 3 days 0.5 days 0.5 days 0.5 days 1 day 0.5 days 0.5 days

Time%
= 3 / 5
=60%

Time%
=0.5/5
=10%

Time%
=1 / 5
=20%

Time%
=0.5 / 5
=10%

VA activity

NVA activity

Chapter 5 Introduction to Agile Methods

96

Based on our assumptions, the state “In development” has a VA value of three days.

We will divide it from the total VA value, which is five, and the value turns out to be 60

percent. This indicates that 60 percent of the total time is needed or will spent here in

this state of the lifecycle. Similarly, we do it or others as well, and you will see that the

reviewing stage has a value of 10 percent, the in-testing state was a value of 20 percent,

and finally the deployment stage state has a value of 10 percent. On adding all these

values, it should sum up to 100 percent.

Calculating WIP

Finally, we calculate the WIP limits for each VA column based on the values derived

(from prerequisites steps 1 and 2) in the following formula:

WIP = Total tasks * Time %

See Table 5-7.

Table 5-7.  WIP Calculation for VA Activities in Kanban Stages

Development Review Testing Deployment

Ready for

development

In
development

Ready for

review

Reviewing
stage

Ready for

testing

In
testing

Ready for

deployment

Deployment
stage

1 day 3 days 0.5 days 0.5 days 0.5 days 1 day 0.5 days 0.5 days

Time%
= 3 / 5
=60%
Total tasks
=8
WIP
= .6 * 8
~4 tasks/
ticket

Time%
=0.5/5
=10%
Total tasks
=8
WIP
= .1 * 8
1 task/
ticket

Time%
=1 / 5
=20%
Total
tasks
=8
WIP
= .2 * 8
~2
tasks/
tickets

Time%
=0.5 / 5
=10%
Total tasks
=8
WIP
= .1 * 8
1 task/
ticket

VA activity

NVA activity

Chapter 5 Introduction to Agile Methods

97

If you sum up all the WIP values, it comes out to be eight, which confirms our

calculation (as per the process defined in prerequisite step 1). Moreover, looking at

the board, it becomes clear which states in the lifecycle need more attention. Let’s

summarize our example for a team of five engineers working in Kanban mode:

•	 Each issue or a ticket on the Kanban board will undergo four key

stages: development, review, testing, and deployment.

•	 Each of these stages will have some idle time where the engineer will

be waiting or preparing before the actual work begins.

•	 Hence, each stage will have two components: VA and NVA. The

efforts spent for each of the VAs and NVAs are discussed and noted

with the team.

•	 We calculate WIP limits for all the VAs in each of the four stages that

are dependent on finding values on the percent of time and total

number of tasks (WIP = Total tasks * Time%).

•	 The total number of tasks is calculated as Total tasks =

Team size / Efficiency.

•	 Efficiency is calculated as VA / (VA + NVA).

•	 Time% is calculated as [VA / Sum of VAs] * 100.

•	 For our example, the maximum limit for in development is four

tasks or tickets, while a review can have one ticket, testing can have

maximum two tickets, and deployment can have only one ticket. But,

in total a maximum of eight tickets can be worked by a team of five

engineers.

As beginners, it’s OK to start with the basic values and make assumptions; as you

mature these values converge to an efficiency level best suited for your work and team

size. See Figure 5-20.

Chapter 5 Introduction to Agile Methods

98

Tools like JIRA allow leads to set up WIP limits for all the swim lanes. See Figure 5-21.

Let’s take another example to see how the WIP limits are reflected in the tool like

JIRA and what happens if there are more tasks assigned to the VA columns and they

exceed the WIP limits. The workflow state Selected for Development will not have more

than five work items in its queue. It’s the same for the “In progress” state; the maximum

limit set is 15. Now if the number of issues breach the defined maximum limit then, that

swim lane gets highlighted in red. For example, say we have an assignment to be done

wherein RHEL systems are to be upgraded to a higher version. To perform this project

activity, we will create a few epics that are further divided into tasks. Whenever the

issues are created, they are placed in the backlog. Team members or leads move these

issues between swim lanes based on their bandwidth and the urgency on these issues.

Figure 5-22 is a quick illustration of the stated example.

Figure 5-21.  Configuring WIP limits in JIRA

Figure 5-20.  Did you know?

Chapter 5 Introduction to Agile Methods

99

The Selected for Development swim lane has a maximum limit of five issues, and the

moment you drag a new issue from backlog it turns red. This alerts the user that more

work items cannot be placed. This is an excellent method to review team capacity that

brings in transparency and helps to track and prioritize work. See Figure 5-23.

Figure 5-22.  Viewing WIP limits in JIRA

Chapter 5 Introduction to Agile Methods

100

By defining these WIP limits, teams get to focus on what needs attention and prevent

tasks from accumulating at any step. It allows teams to know their capacity as well. This

mode of working also highlights inefficiencies and bottlenecks. These values should be

frequently revisited to see if they need updating.

In the beginning, the ops teams may have separate backlogs for each of the areas

like and Windows, Database, Backups, and slowly as teams mature and get used to

these practices, the backlogs and teams can be combined (one common backlog), thus

leading to cross-functional teams. As teams upscale, they should also do retrospectives

themselves and update their ways of working in case things are not functioning as

planned.

While tickets pour into the backlog and get picked up by members, it is also good to

create horizontal lanes to differentiate between a simple incident versus an expedited

incident. This can be set in the tool by configuring the board. For example, you need

Figure 5-23.  Viewing Kanban board with WIP limits in JIRA

Chapter 5 Introduction to Agile Methods

101

Figure 5-24.  Configuring a Kanban board in JIRA

to set up two lanes: one that addresses simple incidents and the other that needs

immediate attention (tickets with highest priority). Click the Configure Board option to

view the swim lanes, as shown in Figure 5-24.

Once you view the page wherein you can configure the workflow and related states,

select the option to update the swim lanes and mention the lanes and the criteria that

differentiates them. See Figure 5-25.

By default, the JIRA Kanban project offers the Expedited lane; you can customize

or rename it or create more swim lanes as needed. For the previous example, we

mentioned that the expedited lane will have incidents with a priority value of highest,

and the rest of the tickets will be in the other lane. As tickets get created, based on their

priority, the tool will segregate the ticket display for teams to view the status instantly.

See Figure 5-26.

Figure 5-25.  Defining horizontal swim lanes in JIRA

Chapter 5 Introduction to Agile Methods

102

Note T eams can succeed in Kanban adoption when they are comfortable with
the basic concepts of workflows, lanes, and types of tickets, and can practice the
culture of “pulling” work rather than work being pushed to them. A Kanban board
is a dynamic visualization of the team workload and helps teams to plan and work
in an effective way.

Figure 5-26.  Kanban board status

Chapter 5 Introduction to Agile Methods

103

�Best Practices in Kanban
Identify Workflow States Early

For infrastructure IT operations teams that are just starting with Kanban, they can start

with just three workflow states: To Do, Work in Progress, and Done. If they plan to build

and deploy new infrastructure components or, say, run through patching activities, then

they can define lifecycle phases as In-Queue, Design, Coding, Test, and Done. There

are teams that also have additional workflow states that mention approval states or wait

time. It is advised that the workflow states are well thought through with the team and

then implemented. See Figure 5-27.

Determine WIP Limits

The concept of Kanban is about magnifying teams’ visibility and analyzing capacity

timing. Finding WIP limits for all the workflow states will benefit the team and help to

plan for increasing capacity if need be. There are two ways to define WIP limits. See

Table 5-8 and Table 5-9.

Figure 5-27.  Kanban workflow states

Table 5-8.  Method 1: Define WIP for Each Workflow State

WIP Limit =2
No of Designers=2

WIP Limit=3
No of Programmers = 3

WIP Limit=1
No of Testers =1

Not Started Design Coding Test Done

Chapter 5 Introduction to Agile Methods

104

Other Best Practices

•	 WIP work limits need to be configured to suit a project’s current

needs, and this should be monitored and updated.

•	 Lead and cycle time are influenced by the commitments made

during the project start. Hence, it is important to track these metrics

and take necessary actions to improve them.

•	 Monitor bottlenecks daily and act actively on them. Encourage team

members to speak up when noticing showstoppers.

Establish a release plan that is shared with the team and well-coordinated with the product

teams. For example, releasing a patch can be merged with application deployment.

�Summary of Kanban
The Kanban model is an excellent fit for infrastructure ops teams that are just getting

started with agile and want to transform to a new model of operations. Instead of

running operations in a traditional way, Kanban offers teams wider visibility and

accountability wherein work is to be pulled by them instead of being pushed. This kind

of a working model builds a culture of trust and transparency. Also, this model enables

the infrastructure operations teams to analyze capacity proactively by defining work-in-

progress limits across the key phases of IT operations. Tools such as Atlassian JIRA offer

built-in templates for teams to start using. With the right mentoring and transition to

agile tools, infrastructure ops teams will increase their productivity over time.

�Scrumban
Scrum and Kanban are the two widely practiced agile methods devised for different team

categories. If Scrum was preached by the development teams, then Kanban served as an

Table 5-9.  Method 2: Define WIP Limit for Overall Workflow Rather Than Each

Workflow State

WIP Limit =6

Not Started Design Coding Test Done

Chapter 5 Introduction to Agile Methods

105

Figure 5-28.  Scrum + Kanban

ideal option for the infrastructure operations team. Both methods individually benefitted

teams. But as time evolved and the need for DevOps emerged, IT organizations started

looking for a hybrid method, which brings in the best from both methods. This became

a prominent ask as development teams started closely with the infrastructure operations

team and a few started forming a DevOps team. This led to designing a new hybrid agile

method called scrumban, which was coined by Corey Ladas (a lean-Kanban practitioner).

This method offers the predictability element from Scrum with the flexibility from Kanban.

It is an ideal fit for DevOps and maintenance teams or large-scale projects. See Figure 5-28.

Scrumban is a hybrid method that delivers in a continuous manner and accepts

changes at any time. It is flexible like the Kanban methodology but embraces the

best practices of Scrum as well. This method introduces a new concept called bucket

planning wherein teams plan the activities and place them in buckets.

•	 One-year bucket: Long-term visionary goals

•	 Six-month bucket: Approved plans

•	 Three-month bucket: Plans ready for execution

•	 Current bucket: Actual plan in action, teams working on tasks

Such a method is suitable for teams who do not want to just focus on the current

workloads and performance but also would like defined goals. For example, an

infrastructure team practicing Scrumban can have long-term goals like adopting AIOps in

the one-year bucket, tool investments and implementation in the six-month/three-month

buckets, and actual operational tasks and infrastructure pipeline work in the current

bucket. This kind of method brings in transparency since the team can align with the

roadmap. This is an ideal agile method for teams where priority changes are very frequent.

Let’s dive more into this method and understand its key construct. See Figure 5-29.

Chapter 5 Introduction to Agile Methods

106

�Scrumban Roles
There are no defined roles while implementing scrumban. Whatever roles exist can

be considered and upscaled to meet the expectations. Every member in the team is

accountable for the stories, and this is where the work-in-progress limits also help.

Existing roles like Scrum master, product owner, specialists, and the Scrum team all

can continue to operate in this model. The only prerequisite is that the team should be

enabled to effectively use this method.

�Scrumban Ceremonies
The basic ceremony that is recommended while practicing scrumban is the daily

standup. Standups are conducted daily to track the progress and brainstorm on any risks

that are identified for the current bucket. Teams refer to the scrumban board for tracking

WIP limits, and their backlog is driven just-in-time by removing the rigid constraints of

sticking to what exists in a product backlog. Additional meetings like planning meetings

or retrospectives are planned only if the team feels the need for them.

�Getting Started with Scrumban
It is evident that scrumban focuses on goals, work visibility, and process improvements,

and of course the key foundation to its success is “the team.” It has also been observed

that some organizations customize scrumban in a way that best serves their teams. Agile

management tools like Atlassian JIRA offer templates for Scrum and Kanban, but there

is nothing explicitly defined for scrumban in the tool. Teams leverage either Kanban

or Scrum as the base template and then customize the template to address scrumban

working methods. A few new tools have recently become available like Method Grid,

Figure 5-29.  Backlogs

Chapter 5 Introduction to Agile Methods

107

Figure 5-30.  Sample Scrumban board, team-based view

Monday.com, ClickUp, Kanban Tool, Favro, etc., that offer scrumban templates along

with Scrum and Kanban templates. Most of them are cloud-based applications. So, if

teams have licenses for JIRA, then they can leverage them for practicing scrumban;

otherwise, they can opt for the new tools available.

One important thing to remember is that the key requirement for enabling teams

on scrumban is the “board.” This Scrumban board will be the visibility tool for teams

for viewing tasks, flagging tasks, and monitoring overall project status as well as viewing

what is in store in the near future. See Figure 5-30.

Assuming you have your choice of tool in place, the following steps are

recommended for practicing Scrumban.

Design a Scrumban Board

The board is the most important aspect in Scrumban that will reflect the team progress.

This is like the Kanban board that displays stories and tasks flowing between states

(like To Do, In Progress, Done). Some teams define states or stages that resemble the

transition states defined in the Scrum approach (like To Do, Designing, Development,

Verification, Deployment).

This board should display current bucket items that can be further segregated into

sections that reflect generic operational tasks versus new infrastructure requests.

The board example in Figure 5-31 shows activities for two teams, one that performs

regular business as usual activities and the other that addresses automation of change

the business requirements like setting new infrastructure or decommissioning stale

environments. There is a third section that highlights ad hoc queries and requests that

need to be discussed and planned.

Chapter 5 Introduction to Agile Methods

http://monday.com

108

Define WIP Limits

Work-in-progress limits follow the same pattern as practiced in Kanban. These should be

defined on the board and should be revisited regularly based on the team’s performance.

These limits enable the “pull” mechanism by the team based on their available capacity.

For the board in Figure 5-32, there are limits defined for each state.

Schedule Meetings

Like the daily Scrums, plan for daily meetups with the team. This mode of

communication should be focused, with a defined agenda for each day. The team

interacts by sharing their workload and risks that need attention. In addition to these

daily meetups, teams can trigger sprint meetings for discussing new requirements and

prioritizing them. This does not have to be every two weeks. Planning activities are to

be triggered when needed, and this too can be displayed on the board. For example, in

the board in Figure 5-33, if the WIP limit on the first state crosses 4, it indicates that a

planning meeting is needed.

Figure 5-32.  WIP limits on a scrumban board

Figure 5-31.  Another example of a scrumban board, current bucket

Chapter 5 Introduction to Agile Methods

109

�Best Practices in Scrumban
These are best practices for scrumban:

•	 Define and determine WIP limits to limit the backlog. This will help

teams to stay focused and avoid missing any deadlines.

•	 The board should be easy to understand and stay relevant. Avoid

having multiple swim lanes or transition states.

•	 Avoid multitasking and focus on completing work in progress rather

than starting a new work item. Identify any unplanned tasks and risks

and communicate them to meet the deadlines. See Figure 5-34.

Figure 5-33.  Scrumban board with limits

Chapter 5 Introduction to Agile Methods

110

�Summary of Scrumban
Teams that are keen in adopting Scrumban should assess the need based on the

following key factors:

•	 They tried Scrum with the team, but it was not successful due to

frequent changes to stories.

•	 Priorities keep changing and are difficult to deliver as planned.

•	 The team needs to track enhancements along with the general

product operations support.

•	 There is a strong need for making teams accountable for their

deliveries and cultivating an agile mindset.

•	 The team is looking for a flexible model of operating workloads. The

focus is to pull work without pushing work.

Thus, this methodology is good for projects that are struggling with agile but are not

able to follow the principles and need some level of flexibility. The culture of “pulling”

work is also an important practice as the team progresses. Through continuous practice,

such teams become self-sufficient since they learn the art of managing and prioritizing

work.

�Summary
Let’s look at the key differences between Scrum, Kanban, and scrumban. See Table 5-10.

Figure 5-34.  Did you know?

Chapter 5 Introduction to Agile Methods

111

Having gone through the various agile methodologies available to infrastructure

and DevOps teams, let’s now understand how we can leverage these methodologies in

infrastructure and cloud operations.

Table 5-10.  Comparison of Agile Methods

Description Scrum Kanban Scrumban

Definition An agile method for IT

projects that focuses on

delivering outcomes in

frequent intervals

An agile method for IT

projects that focuses on

visualizing work by limiting

work in progress

An agile method that

leverages the best

practices from Scrum

and Kanban

Core
objectives

• Cross-functional teams

• �Frequent deliverables

(sprint based)

• Prescriptive nature

• SRE teams

• Frequent changes

• Process improvement

• �Deliver work in small

intervals as well as

limit work in progress

• �Build specialized

teams

Key roles • Scrum master

• Product owner

• Team

No predefined role, but the

project manager will connect

team members.

Scrum team +

additional needed roles

if needed

Basic
construct

• Scrum team

• Sprint board

• Backlogs

• Kanban team

• Kanban board

Scrumban/Kanban

board

Key
ceremonies

• Sprint planning

• Daily standup

• Sprint review

• Retrospective

• WIP review Daily Scrum

Key metrics • Burndown chart

• Velocity chart

• Lead time

• Cycle time

• Lead time

• Cycle time

Cadence Fixed-length sprint Continuous flow Continuous flow with

frequent releases

Chapter 5 Introduction to Agile Methods

113
© Navin Sabharwal, Raminder Rathore, and Udita Agrawal 2022
N. Sabharwal et al., Hands-On Guide to AgileOps, https://doi.org/10.1007/978-1-4842-7505-4_6

CHAPTER 6

Introduction to Agile
Frameworks
In this chapter, we will discuss different delivery models that are defining agile ways of

working and that are also introducing new roles into the system. The topics that will be

covered in this chapter are as follows:

•	 Agile ITSM

•	 IT4IT

•	 Lean IT

•	 Scaled Agile Framework (SAFe®)

•	 Spotify

•	 Large Scaled Scrum (LeSS)

•	 Nexus

•	 Disciplined Agile Delivery (DAD)

•	 Site reliability engineering

�Agile ITSM
As ITSM has evolved, there arose a need to complement rapid digitization and emerging

needs. Organizations identified gaps that needed attention such as fragmented ITSM

tools, limited standardization, etc., and looked at alternates to ITSM. While classic

ITSM was well accepted by many organizations, there was a growing need for agility.

Organizations looked for guidance to run their Service Delivery phase effectively in

an agile way. This gave birth to agile ITSM, which borrowed some of the important

https://doi.org/10.1007/978-1-4842-7505-4_6#DOI

114

principles of agile and constructed a methodology that stressed streamlining,

optimization, and integrations. Organizations adopting agile principles found it easy to

link up with various ITIL stages and use this new agile ITSM way of working.

Agile ITSM = Agile software development + ITSM

If agile talks about “working software,” then ITIL stresses “focus on value.” Hence,

organizations are finding it easy to gel both agile and ITIL principles. As shown in

Figure 6-1, an agile methodology like Scrum was tied to different phases in ITIL. While

the product vision is mapped with the Service Strategy phase, the actual Scrum process

starts with the Service Design phase where user stories requirements are recorded and

prioritized in a backlog. The Service Transition phase has the sprints in a time-boxed

schedule. The final phase is Service Operations, where the product is deployed through

approved requests for change (RFCs).

The only concern initially with this approach was that agile focused on iterations

and ITIL executed in a sequential manner. Organizations adopting agile ITSM found

a way out from this too. They motivated teams to work with a DevOps mindset that

always targeted stability and agility. The infrastructure operations team is involved

in the Service Design phase and provides all the necessary inputs that are needed for

the warranty requirements. If ITSM revolved around stringent release and change

management to control change, this agile ITSM was tackled by deciding on the amount

and frequency of change control needed. This change control often is led by the product

Figure 6-1.  ITIL and agile principles

Chapter 6 Introduction to Agile Frameworks

115

owner to manage the product as well as the sprint backlogs. In fact, it is the product

owner who approves the CAB requests since the product owner manages the sprint

backlog.

The agile ITSM method is a success since it ties the best practices of both ITIL and

agile worlds, driven by a DevOps mindset. The associated roles in both methods also

converged. For example, the roles of a product owner in the Scrum methodology and the

service owner in ITIL were merged since the expectation from both roles was to be the

voice of the customer.

�IT4IT
IT4IT is a reference architecture that illustrates an operating model for managing IT. It is a

powerful modern tool that helps organizations to manage their digital journey. This standard

is being accepted and implemented by organizations of varied sizes with a key focus on

driving interoperability, improving existing capabilities, and rationalizing applications.

The standard also means to solve issues such as slow and manual activities linked with

code management, packaging, deployment, and configuration management. (The IT4IT

framework and its value streams come from https://www.opengroup.org/it4it, and

IT4IT is a trademark of the Open Group.) The framework comprises four value streams that

iteratively operate to deliver value and measures to improve, as shown in Figure 6-2.

Figure 6-2.  IT4IT value streams (reference: https://www.opengroup.org/it4it)

Chapter 6 Introduction to Agile Frameworks

https://www.opengroup.org/it4it
https://www.opengroup.org/it4it

116

•	 Strategy to Portfolio (S2): Interconnects different functions that

are involved in managing a portfolio of services delivered to fulfill

an enterprise strategy. This value stream allows IT to contribute to

enterprise strategy and planning. It also provides a holistic view on

IT portfolio activities to understand the relationships between all the

teams under the IT umbrella. It also comprises key functional and

auxiliary components that drive the key activities.

•	 Requirement to Deploy (R2D): Controls the quality, schedule, and

cost of services regardless of delivery model. The idea behind this

value stream is to accelerate sourcing and service delivery with best

practices. Successful R2D is possible through a clear definition on

scope, service blueprints, policies, and problem statements. Like S2P,

R2D also has various functional components that process and deploy

data objects.

•	 Request to Fulfill (R2F): Emphasizes time to value, repeatability, and

consistency for customers needing IT service support. It focuses on

the relevance of deploying standard changes rather than delivering

normal or custom changes. It helps organizations move toward

a service broker model. It primarily focuses on system of record

integrations between the functional components.

•	 Detect to Correct (D2C): Increases efficiency, reduces cost and risk,

and drives continuous improvements. This is achieved through

automation, self-service, faster time to market, reducing MTTR,

defining clear ownership, and improved management. A key goal of

D2C is to manage IT efficiently by monitoring and automating key

services, correlating, and managing incidents or events effectively

and quickly. See Figure 6-3.

Chapter 6 Introduction to Agile Frameworks

117

Each stream offers a list of key performance indicators (KPIs) that help in defining

organizations’ success toward its adoption, as shown in Table 6-1.

Figure 6-3.  IT4IT overview

Table 6-1.  Value Stream and Its KPIs

Value Stream Key KPIs

S2P •  CapEx versus OpEx

• P ercent of software license consumption

•  Frequency of security assessments

• A verage cost/service or application

R2D • P ercent of actual versus planned executed tests

• P ercent of automated tests

• P lanned cost versus actual cost

• P ercent reduction in rework

R2F • N umber of completed service requests

• P ercent of WIP within SLAs

• P ercent of completed work within SLAs

• N umber of incidents for request fulfillment

D2C • OLA versus SLA

• R eduction in outages

• N umber of problems identified and removed

• P ercent of time invested on business-critical services

Chapter 6 Introduction to Agile Frameworks

118

Various organizations adopt IT4IT at an enterprise scale using SAFe®, which helps

them to increase release velocity. IT4IT describes the best tools architecture and related

integrations that are needed to drive an effective implementation of SAFe®/agile and

DevOps. The framework also provides open source templates for IT transformation

programs, tool interoperability, and service management encompassing everything in

IT. See Figure 6-4 and Table 6-2.

IT4IT is a reference framework similar to ITIL; while ITIL focuses on managing

IT, IT4IT focuses on IT service management (see Figure 6-5). In the infrastructure IT

operations world, both have been used on a large scale, and enterprises have gotten the

benefits of standardization using these processes and best practices.

Figure 6-4.  IT4IT reference architecture (reference: https://www.opengroup.org/
it4it)

Table 6-2.  IT4IT Ways of Working

Process Area Traditional Way Modern Way

S2P Waterfall Agile

R2D Process heavy Optimized

R2F Manual Automated

D2C Siloed Connected

Chapter 6 Introduction to Agile Frameworks

https://www.opengroup.org/it4it
https://www.opengroup.org/it4it

119

�Lean IT
Lean is an integrated system of principles, practices, and techniques for operational

excellence based on empowering the front line and driving a relentless pursuit of perfect

customer value creation. The lean IT framework extends the principles of lean services.

It promises to identify and remove waste so that customer service is improved. There has

been significant growth in the demand for IT services, and this has brought in variability

in service offerings. The cost of expertise and environment setup has also grown. With

an increase in complexity and demand, there is a need to look at improving the flow and

eliminating waste. See Figure 6-6.

Figure 6-5.  IT4IT versus ITIL

Figure 6-6.  Lean IT overview

Chapter 6 Introduction to Agile Frameworks

120

What is not lean IT?

•	 It is not just process redesigning.

•	 It is not limited to just tools and techniques.

•	 It is not a one-time improvement program.

•	 It is not a new flavor of Six Sigma.

But what is a waste in IT? There could be various types of wastes that can be

remembered as the abbreviation DOWNTIME.

•	 Defects: Issues are found in production due to insufficient testing.

Defects are bugs, errors, or mistakes that exist in software. Leaked

defects in production are costly and need rework.

•	 Over production: In the current era, the customer prioritizes

requirements and expects them to be delivered frequently and in

shorter cycles. Releasing requirements that have low value or with a

lower priority in comparison to higher-priority requirements is not

what the customer demands. This is where prioritized backlogs are

being used for requirements.

•	 Waiting: This is related to the idle time between steps in the process

and workflow among different team transitions on a task.

•	 Non-value-added processing: Any process or step in a workflow that is

not adding value is a waste. Excessive documentation in the current

era of agile is not needed.

•	 Transportation: There is a knowledge loss when it is transitioned

or transferred to other people within or outside the team. The

requirements when shared from one person to another person

sometimes change due to a difference in understanding. This leads to

misunderstood requirements.

Chapter 6 Introduction to Agile Frameworks

121

•	 Inventory: There is a saying, “Stop starting and start completing.”

This is relevant for the tasks when picked up should be completed

before picking up the new task as customers demand value to be

delivered. Some examples of Inventory are unutilized resources,

like large number of repositories or branches that are not

required and are not being used.

•	 Motion: This points to the list of manual and mundane repetitive

activities that involve a lot of time that otherwise could be spent on

thinking of and creating new services or improving existing services.

•	 Employee knowledge: People’s skillsets are not rightly aligned with

the work. The right practices need to be aligned so that employee

knowledge is being used at the right place.

Now that we have seen the categories of waste, let’s understand the five core

principles of lean IT.

•	 Value: The value needs to be defined from a customer’s perspective.

The focus is on the services delivered.

•	 Map the value stream: The value stream maps all the steps, efforts,

inputs, and outputs that are value-added or non-value-added.

•	 Flow: The services and information flow from end to end through

the process. The flow should be defined in such a way as to have a

smooth delivery of services.

•	 Pull: Work and deliver customer needs when they are asked and

required.

•	 Seek perfection: This is the complete elimination of waste to provide

value to a customer through all the tasks. This is possible through

continuous improvements and continuous feedback. See Figure 6-7.

Chapter 6 Introduction to Agile Frameworks

122

The core principles of lean IT are observed in the SAFe® agile method covered in

the next section. While teams work in agile mode, they target flexibility, adaptability,

and improving customer satisfaction. To speed up deliveries, it is important to analyze

the workflow and identify areas that are consuming time and hampering the delivery

schedule. Hence, both agile and lean help teams to visualize work, to continuously learn

and collaborate, and to measure project progress across each iteration. Lean also offers

an important principle called value stream processing that helps to identify the waste

to make the process more efficient. This is done through a value stream assessment

process, which is used to assess the strengths and weaknesses of an enterprise’s value

stream.

The steps in the value stream assessment process are as follows:

	 1.	 Select a product/service/flow.

	 2.	 Involve the stakeholders.

	 3.	 Understand the voice of the customer.

	 4.	 Develop the current state value stream map.

	 5.	 Identify waste.

	 6.	 Develop the future-state value stream map.

Figure 6-7.  Lean IT core principles

Chapter 6 Introduction to Agile Frameworks

123

	 7.	 Determine the benefits.

	 8.	 Develop the implementation plan.

	 9.	 Implement the future-state VSM.

	 10.	 Analyze and fine-tune the future-state VSM.

Interestingly, value stream mapping is also leveraged as a measure to assess an

organization’s maturity on DevOps. Various templates are available that help teams to

document the current state that focuses on the quality of work delivered, the percentage of

rework done, the lead and cycle time on delivering working software, etc. See Figure 6-8.

The key ingredients for successful product development depend on how lean,

agile, and DevOps have been adopted and practiced by the team. These three portions

complement each other and define new ways of working. The core foundation is the

customer need, or the value that needs to be delivered within an optimized cost model.

While lean focuses on building the right things in an optimized way, agile focuses

on building the thing right. The shift from traditional ways to modern ways is a growing

expectation and cannot be put aside anymore. Process-heavy, manual activities are to be

optimized and automated. Siloed teams need to connect and collaborate continuously.

Lean IT is an approach to align IT with the business. It is a goal-oriented framework that

focuses on team empowerment. When complemented with agile and DevOps, it does

wonders for organizations. See Figure 6-9.

Figure 6-8.  Ingredients for successful product development

Chapter 6 Introduction to Agile Frameworks

124

�Scaled Agile Framework® (SAFe®)
The Scaled Agile Framework® (SAFe®) is the leading framework for organizations

seeking to embrace Business Agility and thrive in the post-digital economy. SAFe® was

introduced in 2011 by Dean Leffingwell, et. al. Recognizing the challenges of time to

market and quality among large scale solution providers, the authors sought to bring

alignment, collaboration, and transparency to even the most complicated business and

technology organizations. The framework is a series of processes and tools derived from

years of observing patterns across enterprises, rooted in a Lean-Agile mindset, core

values, and ten immutable underlying Lean-Agile principles; these are –

•	 #1 Take an economic view

•	 #2 Apply systems thinking

•	 #3 Assume variability; preserve options

•	 #4 Build incrementally with fast integrated learning cycles

•	 #5 Base milestones on objective evaluation of working systems

•	 #6 �Visualize and limit Work-In-Progress, reduce batch sizes, and

manage queue lengths

•	 #7 Apply cadence, synchronize with cross domain planning

Figure 6-9.  Lean and agile

Chapter 6 Introduction to Agile Frameworks

https://www.scaledagileframework.com/
https://www.scaledagileframework.com/take-an-economic-view/
https://www.scaledagileframework.com/apply-systems-thinking/
https://www.scaledagileframework.com/assume-variability-preserve-options/
https://www.scaledagileframework.com/build-incrementally-with-fast-integrated-learning-cycles/
https://www.scaledagileframework.com/base-milestones-on-objective-evaluation-of-working-systems/
https://www.scaledagileframework.com/visualize-and-limit-wip-reduce-batch-sizes-and-manage-queue-lengths/
https://www.scaledagileframework.com/visualize-and-limit-wip-reduce-batch-sizes-and-manage-queue-lengths/
https://www.scaledagileframework.com/apply-cadence-synchronize-with-cross-domain-planning/

125

•	 #8 Unlock the intrinsic motivation of knowledge workers

•	 #9 Decentralize decision-making

•	 #10 Organize around value

SAFe® is highly configurable to address each organization’s intent and purpose. It

offers different configurations (Essential, Large Solution, Portfolio and Full) that can

easily be adopted by any organization. One key element that is common amongst all

these configurations is the concept of the Agile Release Train (ART). An ART delivers a

value stream to the organization; it is comprised of 5-12 Agile teams (with ~50-125 cross

functional experts across different departments) that work together in iterations called

Program Increments (PIs). All the features which are planned for the PI are delivered

through the train. If a feature is not a part of the planned PI, then it will not get started till

the next increment begins. Also, an ART maps with the sprint cycles. Since teams within

the ART should be aligned they need to follow the same start and end dates for their

sprints. Every ART has a role called the Release Train Engineer (RTEs- functions like a

Scrum Master); who facilitates the release cycle.

Figure 6-10.  ART in SAFe®

Chapter 6 Introduction to Agile Frameworks

https://www.scaledagileframework.com/unlock-the-intrinsic-motivation-of-knowledge-workers/
https://www.scaledagileframework.com/decentralize-decision-making/
https://www.scaledagileframework.com/organize-around-value/

126

�Spotify
Spotify is one of the most popular audio streaming services in the world. The Spotify

model is all about the company’s approach for enhancing team agility. The model was

first introduced in 2012. The model focuses on people, culture, and an autonomous

approach on scaling agile. It is an example of how multiple teams are organized in

a product development organization by adopting a change in culture and how we

collaborate and network.

The model differs from others as it focuses on organizing around work and

restructuring the organization on the basis of business to enhance agility rather than

following specific set of practices such as daily standups, planning meetings, etc.

The teams in the Spotify model decide which framework to adopt, be it Kanban, Scrum,

scrumban, etc. The way the team is structured is very different than the traditional agile

frameworks. Let’s understand the basic terms used in this framework. See Figure 6-11.

Figure 6-11.  Spotify framework

Chapter 6 Introduction to Agile Frameworks

127

Squad: Squad teams are cross-functional teams with six to ten

members. The team has a mission and are supported by an agile

coach and product owner.

Tribe: At times, certain people need to work across squads on

features, so they form a tribe. A tribe consists of a large number

of people unlike squads. Each tribe has a tribe leader who aligns,

coordinates among squads, and fosters collaboration.

Chapter: Chapters are standards and best practices that enable

the team to do their work. Typically, a chapter has a leader who

is mostly a senior technical lead or an architect. Chapters are

formed within a tribe.

Guild: A guild is a forum where people join out of interest about a

specific topic. This is voluntary and spans tribes unlike chapters.

There is no specific leader for a guild, but anyone can volunteer to

coordinate the activities of a guild and bring everyone together.

Trio: Trio is a combination of a tribe lead, product lead, and

design lead. Trio is part of each tribe and ensures alignment in a

tribe on the three core areas of a product.

Alliance: A trio sometimes works together toward a bigger

common goal of the organization where multiple tribes need to

work together.

Let’s assume that the enterprise Alpha needs to transform into a Spotify model. As

evident in Figure 6-12, organizations will have various product teams, and each will have

squads and chapters running either vertically or horizontally.

Chapter 6 Introduction to Agile Frameworks

128

Each product team can have multiple squad teams based on requirements, and

as soon as they complete a product feature, they can be regrouped to plan for another

product feature. Each squad is a dedicated team that knows what is to be developed

and plans accordingly. Chapters, on other hand, focus on how things can be delivered.

For example, these can be thought of as communities of practice like Scrum masters.

These Scrum masters get aligned with product teams for guiding and implementing

agile practices, and when the team is self-sufficient, they return to the community and

get aligned with another product team. These squads and chapters can adopt their

own agile methodology that suits them best. Each product team can have multiple

squads, and they work together to ensure that the product is delivered from end to

end leveraging the available DevOps tooling. Apart from these squads and chapters,

of course there are other important functions such as PMO, security, and platform

operations that horizontally provide support for everyone across the organization.

Such a model seems to be difficult to implement initially, but a phased plan helps

enterprises achieve this goal smoothly over a defined time. It is important to note that the

new structure demands new roles, new tools, and training needs, and this should be the

Figure 6-12.  Squad-chapter agile model

Chapter 6 Introduction to Agile Frameworks

129

prerequisite before jumping to this new model. The goal is to ensure that agility is the core

principle for every team, and that can be achieved with the right process mining, goal

setting, new role definitions, and introduction to new technology to save time and effort.

This framework also introduces a few new role definitions, as shown in Table 6-3.

The Spotify model is a well-tested framework for infrastructure operations teams that

can scale in sprints and redefine their operations organization structure. To transition

our example company Alpha into a Spotify working organization, the following items

need to be addressed first:

•	 Coach all team members on agile concepts. Existing operations

teams with the culture of “push” need to be mentored on “pulling

work” and getting accountable.

•	 Encourage them to ask questions and embrace the upcoming

change. Teams need to be encouraged to move on the new path of

agility that will benefit them.

•	 Identify tools that are needed in the new ecosystem. As teams learn

the agile methods, they also need to learn new tools that will make

them effective. They should be trained on how to create and refer to

dashboards, view team progress, and understand the basics of “work

in progress,” as well as how their contribution will lead to the success

of the engagement.

Table 6-3.  Roles in Spotify

New Role Portfolio Level

Squad lead • O rchestrates work and builds a collaborative team

• M entors the team and provides feedback for improvements

• E mbraces the culture of accountability

•  Collaborates with chapter leads

Chapter lead • P erforms as a line manager

• P rovides specialized support across different squads

• T racks and delivers high-quality services

SRE •  Cross-skilled engineers, part of chapters

• S pecialized in emerging technologies like IaC, DevOps, the cloud, etc.

Chapter 6 Introduction to Agile Frameworks

130

•	 Form a new organization structure that comprises squads, chapters,

guilds, and tribes. This structure should also be evangelized with the

teams so that they understand the purpose of each team.

•	 Select the agile methodology that will be practiced by squads.

The methodology should consider the maturity of the teams in

understanding the methods like Scrum, Kanban, scrumban, etc., and

their implementation. Agile adoption can be successful only when

squads practice them regularly.

•	 Identity new roles to be introduced and map them with existing roles;

otherwise, plan to hire. As the existing operations team gets trained,

the team should be notified that the new structure will bring in new

roles and responsibilities. They should be given an opportunity to

volunteer for these new roles.

•	 Define the new operational organization structure that is mapped

with new roles, tagged with team members. Collaborate with

organization change management to broadcast this new change.

Plan and run workshops to let teams know about the new change,

which will avoid chaos within the teams. Alternatively, pilot and

expand the structure. The new operations structure can be rolled out

in a staggered manner instead of a big bang. This decision should be

made by the executives based on their in-depth understanding of the

ecosystem.

Let’s assume Alpha is preparing for this new journey; the prerequisites are being

taken care of, and now we need to draft an outline for the new model.

•	 New roles = product owner, squad lead, chapter lead, SREs, cloud

engineers, and architects. You can identify existing roles that can be

scaled to these new roles; for example, tower leads can be groomed

to be squad leads.

•	 Horizontal teams = chapters, guilds. These service groups run

through all the squads, and the members keep moving between

different squads. Existing teams that run governance, compliance,

etc., can be scaled to these new roles.

Chapter 6 Introduction to Agile Frameworks

131

•	 Vertical teams = tribes, squads. These teams can be visualized as

product teams that have pizza-sized teams scattered across different

regions and working for different features.

For Alpha, we will plan for two tribes. The first tribe will fulfill requests for on-premises

infrastructure, and the second one will fulfill cloud requests. We will call them on-premise

tribe and cloud transformation.

Let’s understand the organization structure, as shown in Figure 6-13.

•	 The on-premise tribe will support on-premises environments, and

the cloud transformation tribe will support cloud environments.

•	 Team members will be grouped into squads, where each squad will

have SREs who are cross-skilled experts on Unix, Wintel, messaging,

backup, VMware, network, automation, etc.

•	 Each tribe will have three squads. The squads in a tribe target a

defined set of workloads.

•	 A generic squad will be working on automation use cases.

•	 The innovate squad will work toward new integration and pilots.

•	 A global squad will address operational tasks across all regions.

•	 The squads will be led by mentors or leads who will empower teams

on this new organization structure and way of working. The leads will

also decide on the agile methodology that they will practice.

•	 Each squad will have its own product owner who will be working

with the agile team.

•	 The DC generic/cloud generic team will follow Scrum to address

development stories and tasks on automation threads.

•	 The DC innovate/cloud innovate team will follow the scrumban

method to address stories and tasks for both development

and operations for pilot rollouts and continuous research and

development.

•	 The DC global/cloud global team will follow the Kanban method

wherein operational user stories and tasks will be tracked and

resolved.

Chapter 6 Introduction to Agile Frameworks

132

There will also be two chapters and guilds that function as horizontal services.

•	 Standards comprised of architects that define patterns,

nomenclature, governing rules, etc.

•	 Best practices that serve as a community of practice across all the

squads, sharing effective methods and tools needed to run an

efficient pipeline or operation.

•	 Each chapter will be coordinated and managed by a service owner or

chapter lead.

•	 The standards and best practices chapters both will have members

from all the squads in that particular tribe. In our example, some

members from all squads of the on-premise tribe will be part of

the standards and best-practice chapters. Similarly, this will be

applicable for the other tribe.

•	 In our example, a guild is specifically for agile coaching. This guild

will have members from both tribes.

Figure 6-13.  Spotify model for InfraOps

Chapter 6 Introduction to Agile Frameworks

133

These were just examples; there can be more tribes such as for risks and compliance,

release and automation, service desk, etc., which in turn will have its squads, chapters,

and guilds.

The success of the Spotify model can be achieved by having the right culture

mindset, giving autonomy to the teams, choosing the framework that best suits the team,

adopting tools that are beneficial to them, encouraging teams to participate in guilds,

building trust, motivating and appreciating people, and learning from mistakes.

�LeSS
LeSS was introduced in 2005 by Bas Vodde and Craig Larman. The LeSS framework

expands one team Scrum to multiple teams by scaling. (The references have been taken

from https://less.works/less/framework.) LeSS applies Scrum principles, processes,

and elements in a large team context where multiple teams work on a single product. All

Scrum teams follow the same sprint, use the same product backlog, and have same one

product owner.

Customer requirements in LeSS are categorized into requirement areas. Every

product backlog item is part of only one requirement area. The requirements in a

particular area are grouped together. This forms an area product backlog that is a subset

of the product backlog. Items in the area product backlog are smaller when compared

with the product backlog as those are broken down to be completed in one sprint. The

product backlog items from the area product backlog get picked up by multiple teams

working on that backlog. This is a different approach when compared to other scaled

frameworks.

There are other LeSS frameworks such as Basic LeSS, which has two to eight teams,

and LeSS Huge, which has more than eight teams. See Figure 6-14.

Chapter 6 Introduction to Agile Frameworks

https://less.works/less/framework

134

LeSS has guides and experiments that have been carried out by people who

introduced LeSS based on implementing scaled agile in multiple organizations.

In addition to the Scrum roles of product owner, Scrum master, and development

team, LeSS has an additional role of a manager.

A manager in LeSS provides autonomy to the team to experiment and assists the

team in removing barriers and improving continuously.

The area product owner (APO) key role in the LeSS Huge framework assists and

coordinates with the product owner (PO) and bridges any gaps between the business

and the technical teams. The roles and responsibilities of APO are like a PO. The final

decision-making on a requirement and its prioritization in the product backlog lie with

the PO rather than the APO, even though both work together. The APO also helps the

PO from being overloaded. The APO focuses on customer-focused product features

and works with the product owner on them. The area product backlog is managed by

the APO, which in turn is used by multiple teams within an area. Also, the APO leads all

these teams that are part of that area. See Figure 6-15.

Figure 6-14.  LeSS overview

Chapter 6 Introduction to Agile Frameworks

135

In addition to the regular Scrum ceremonies, there is an additional product backlog

refinement meeting that focuses on product backlog refinement considering priority,

estimation, breakdown of bigger stories, identification of risks, and dependencies.

An Example
Let’s consider our earlier enterprise Alpha that needs to be transitioned from a

traditional approach to a LeSS Huge framework. This enterprise has both the on-

premises and cloud environments, and we need to create a new structure made up of

teams that will work on automation through IaC. The following roles and team structures

are needed to roll out the LeSS framework:

•	 New roles = product owner who will manage groups that are led by

the area product owners. Each squad will be led by a squad lead or a

Scrum master, and each squad will have architects and cross-skilled

engineers called SREs that manage both type of environments.

•	 Vertical structure = groups. These teams are further made up of

squads that have a defined purpose. Moreover, each squad can

choose an agile method that best suits their working culture. See

Figure 6-16.

Figure 6-15.  Product owner and area product owner
(reference: https://less.works/less/less-huge/area-product-owner)

Chapter 6 Introduction to Agile Frameworks

https://less.works/less/less-huge/area-product-owner

136

To implement LeSS, we need to form two groups of squads. The on-premise group of

squads will be called Generic, Innovate, and Global, each having a Scrum master, SREs,

and an infrastructure architect. The new infrastructure squads will have cross-skilled

people with Unix, Windows, VMware, AppOps, DBA, and networking skills. Similarly,

the cloud group will have three more squads that work together supporting cloud-

related tasks such as supporting existing teams, migrating on-premises applications

to the cloud, and engineering on extensions and integrations. The on-premises and

cloud groups will have their own area product owner (APO). This APO will work very

closely with teams to share product requirements. There will be only one product owner

(PO) that will manage this service. The PO here is responsible for all the infrastructure

support and automation activities, be it on premise or on the cloud. So, in this example

there are two groups that continue supporting business-as-usual work activities along

with the development of automation pipelines for migrating applications to the cloud.

A single product backlog will be managed and prioritized by this product owner. All the

squads will follow the same sprints and work toward a common business goal, which is

Figure 6-16.  LeSS structure

Chapter 6 Introduction to Agile Frameworks

137

to maximize infrastructure automation. Thus, LeSS focuses on building an end-to-end

product by multiple teams working together on the same product following the same

sprints, but working in in different groups, though.

�Nexus
The Nexus framework was introduced in 2015 by Ken Schwaber who is a co-creator

of Scrum framework available at Scrum.org (https://www.scrum.org/resources/

scaling-scrum). Nexus is based on the Scrum framework and uses an iterative and

incremental product delivery approach. It is useful for organizations where multiple

teams work on the same product and integrate as a larger team.

It works well with three to nine teams where each team is again a small team of

eight to ten people, all working together on the same product. All teams work toward a

common goal. See Figure 6-17.

It differs from Scrum as it does not have a product owner for each team; instead,

there is one product owner for all teams. There is one common product backlog that is

managed by the product owner, and Scrum teams pull work from it. In addition to the

regular roles of Scrum like Scrum master, product owner, and developers, Nexus has a

new accountability role, which is the Nexus integration team.

Figure 6-17.  Nexus framework (reference: https://www.scrum.org/resources/
scaling-scrum)

Chapter 6 Introduction to Agile Frameworks

http://scrum.org
https://www.scrum.org/resources/scaling-scrum
https://www.scrum.org/resources/scaling-scrum
https://www.scrum.org/resources/scaling-scrum
https://www.scrum.org/resources/scaling-scrum

138

The Nexus integration team ensures every sprint is an integrated product from all

the teams that is ready and delivered. Scrum teams integrate the code, but focus and

accountability lie with the integration team for a sprint-integrated product. The integration

team has a product owner, Scrum master, and required integration team members who will

resolve technical issues when needed. The integration team is also accountable for coaching

and mentoring the Scrum teams to follow and learn the practices and tools to implement

and develop the product with quality. So, the key difference in this model is that rather than

integration happening through an ART, there is a separate team whose job is to integrate.

Events are similar to in Scrum; they include the Nexus planning meeting, Nexus daily

Scrum, Nexus sprint review, Nexus sprint retrospective, and cross-team refinement.

Cross-team refinement is done for the product backlog to help identify the

dependencies among the teams and also plans which Scrum teams will deliver which

items from the product backlog.

An Example

In the traditional model, code integration is a big challenge when multiple code bases

are to be integrated. And during integration, many hidden defects are identified. The

integration team that works on code integration and resolves code merger issues helps a

lot in such scenarios. See Figure 6-18.

Figure 6-18.  Nexus structure

Chapter 6 Introduction to Agile Frameworks

139

Let’s transform our imaginary traditional company Alpha into the Nexus framework.

The following will be the new elements that will get introduced into the system:

•	 New roles = product owner, squad lead/Scrum master, SREs,

architects, and cloud engineers.

•	 Vertical structures = squads. There could be a number of squads that

work together to deliver an enterprise theme or epic, for example,

delivering a self-service catalog.

Teams will be transformed into six squads or teams, having a Scrum master, SREs,

cloud engineers, and architect. There will be three DC squads called Generic, Innovate,

and Global. These DC squads will have cross-skilled people with UNIX, VMware,

network, Windows, DBA, and AppOps skills. The cloud squad will manage and deliver

components and services on the cloud. The other two squads will be for automation and

compliance, with automation, DevOps, cloud, IM, and compliance management skills

separate from infrastructure. All the squads will have one common product owner since

there is one product that needs to be managed and developed. A single product backlog

will be managed and prioritized by the product owner. Unlike the other scaled agile team

structure, Nexus has an additional integration team that will have team members from

the DC, cloud, automation, and compliance squads. They work on integration issues

for the integrated sprint deliverable from all squads. All the squads will follow the same

sprints and work toward a common business goal.

Thus, for teams where Scrum is fully implemented and there is one product to be

developed, the Nexus model is the best to adopt.

�Disciplined Agile Delivery (DAD)
The DAD framework was introduced in 2009 by IBM under the guidance of Scott Ambler

and Mark Lines. It is also similar to SAFe® when adopting the principles of lean and agile.

It is a process-driven framework that focuses on interaction between people and within

the organization. See Figure 6-19.

Chapter 6 Introduction to Agile Frameworks

140

Its delivery cycle consists of three distinct phases:

Inception: In the Inception phase, the team is formed, the project

vision is formed and aligned with the organization vision, the

scope is identified, the architecture and technical strategy along

with the testing strategy are formed, the initial plan and release

gets decided, the funding is secured, and the risks are identified.

Construction: This is all about developing a consumable

solution, creating an architecture, improving quality, addressing

stakeholder requirements, and moving closer to release and

delivering value.

Transition: This is the phase where team ensures the solution is

ready for deployment and performs the deployment.

There are primary and secondary team roles. The primary roles are the team lead,

product owner, architecture owners, team members, and stakeholders, whereas the

secondary roles are the testers, technical experts, etc., which interact with the team and

the environment for developing a workable solution. The ceremonies are also similar to

the Scrum framework.

Figure 6-19.  Disciplined agile delivery framework

Chapter 6 Introduction to Agile Frameworks

141

There are two scaling angles for DAD.

Tactical agility at scale: This address scaling for team factors

such as size, geography, complexity of project, etc., through the

application of processes and standards.

Strategic agility at scale: This address scaling for different areas of

the organization through the agile and lean strategies.

Thus, the organization can decide which DAD scaling method is required as per

applicability.

Table 6-4 highlights some key differences of some of the frameworks mentioned so far.

Table 6-4.  Quick differences on some of the Agile Frameworks

Description LeSS Spotify Nexus

Definition An agile Scrum framework

for scaling Scrum to

multiple teams. It provides

two variants:LeSS, up

to eight member teams,

andLeSS HUGE, up to a few

thousand people in one

product.

A people-driven,

autonomous approach

for scaling agile

that emphasizes the

importance of culture and

network.

An agile Scrum

framework where

multiple teams work on

a single product portfolio

and create an integrated

increment.

Core
objectives

1. Lean thinking

2. Systems thinking

3. �Whole-product focus

4. Customer centric

5. �Continuous improvement

1. Self-management

2. �Flexibility by focusing on

organizing work

3. Focus on culture

1. �Empiricism and self-

management

2. �Organizing around

value

3. �Ensures transparency

4. �Focus on continuous

integration and

continuous

improvement

(continued)

Chapter 6 Introduction to Agile Frameworks

142

Table 6-4.  (continued)

Description LeSS Spotify Nexus

Key roles 1. Product owner

2. Scrum master

3. Team

4. Area product owner

1. �Squads (6–7 members)

2. �Tribes (40–150

members)

3. �Chapters (specialists

from within same tribe)

4. �Guilds (communities of

interest)

5. �Trio (tribe lead, product

lead, design lead)

6. Chief architect

1. �Product owner (one

for all)

2. Scrum master

3. Team

4. �Nexus integration

team

Basic
construct

1. One team Scrum

2. �One DoD for all teams

3. One sprint

1. �Tribe engineering model

2. �Guilds and chapters

1. �One sprint for all

teams

2. �Teams (three to nine

Scrum teams)

3. �Nexus integration

team for integrating

increments of each

team

4. �One product owner for

all teams

Key
ceremonies

1. �Sprint planning (part 1

and 2)

2. Daily Scrum

3. Sprint review

4. �Product backlog

refinement (PBR)

5. �Overall retrospective

1. �Squads adopt either

Scrum or Kanban and

follow the ceremonies

2. Retrospectives

1. �Nexus sprint planning

2. �Nexus sprint review

3. �Nexus sprint

retrospective

4. Refinement

5. �Nexus daily Scrum

(continued)

Chapter 6 Introduction to Agile Frameworks

143

�Site Reliability Engineering
SRE is an application-first, reliability-first approach to IT operations and a set of

best practices including metrics focused on availability and errors. The SRE concept

originated in the early 2000s at Google to provide support to complex and global

infrastructure at Google. The term was coined by Treynor Sloss, Google’s VP of

engineering.

As the name suggests, the primary focus of SRE is system reliability. The SRE team

also focuses on developing health monitoring, deployment automation, and other such

tasks that enhance the reliability of the overall system.

SRE Guiding Principles

Now let’s look at the seven key SRE principles that describe processes needed to

implement DevOps principles.

Embrace risk: We all acknowledge the fact that services cannot

be 100 percent reliable. Teams make continuous efforts to

improve and maintain the reliability score, because it impacts the

customer satisfaction. Of course, improving reliability demands

investments. When risks are embraced, we get to know when such

investments are unnecessary and when they are really needed.

Overspending on reliability may decrease development velocity,

Table 6-4.  (continued)

Description LeSS Spotify Nexus

Key metrics 1. Burndown chart

2. Velocity chart

1. Lead time

2. Cycle time

3. Velocity chart

1. �Nexus sprint goal

(sum of all work and

sprint goals)

2. �Nexus integrated

increment (current

sum of all integrated

work that has been

completed)

Cadence Fixed-length sprint Weeks 2 to 4 weeks

Chapter 6 Introduction to Agile Frameworks

144

and organizations will not favor this. The principle of embracing

risk has a cultural component too (the key toward DevOps

adoption), wherein teams should feel secure when they are taking

risks to accelerate development. This is possible by determining

the following factors that the teams can refer to always:

•	 Risk of not implementing an improvement request. Analyze the

ripple effect when a change request is not implemented; this

will lead to a major impact that may result in making a customer

unhappy.

•	 Acceptance level of reliability for customers. Look at the usage

patterns, collect feedback, and define the SLO and SLI (described

in the next principle) values to gain team confidence.

•	 Cost for implementing a change that may increase reliability.

Study the associated costs that are needed for improving services

that will have a positive impact on the business.

•	 Estimate the costs associated with the risks and share it with

the teams so that they understand the impact and make wise

decisions.

•	 Define service level objectives (SLOs): Every organization signs a

legal agreement with their customers that comprises of a set of

service level agreements (SLAs). These SLAs are commitments

with the customer, ensuring that the service will be available for

their consumption. For example, servers will be available 99.9

percent of the time. To ensure that these SLAs are not breached,

companies map these SLAs into internal goals calling them SLOs,

and these are further translated into service level indicators

(SLIs). While an SLO helps teams to manage risks and budget for

any errors, an SLI notifies teams for an action to be taken before a

service causes pain to their customers. See Table 6-5.

Chapter 6 Introduction to Agile Frameworks

145

It is important that teams build effective SLOs and SLIs based on

the customer’s pain point, and they should revise (aligned with

the DevOps principle of continuous feedback) these values as

services mature.

•	 Minimize toil: Toil refers to the amount of redundant work that a

team does frequently. In SRE, removing toil is another important

principle that helps drive accelerated development and operations.

This is possible through automation and optimization techniques.

Teams can eliminate toil by observing the list of tasks that are

time-consuming and recurring. By creating effective automation

with guidelines and templates, one can reduce toil drastically, thus

allowing teams to focus on other areas that need attention. Removing

toil should be done in sprints (aligned with the DevOps principle of

continuous improvement) so that teams get to monitor the benefits.

•	 Monitoring: There is a lot of meaningful data that is produced by

the systems, and not all that data needs teams’ attention. There are

monitoring tools available to track, extract, and consolidate this data

into useful metrics that help teams to derive decisions or take action

to resolve issues. For an SRE, it is important that the following metrics

(aligned with DevOps principle of continuous improvements) are

tracked, which in turn are needed to measure SLIs.

Table 6-5.  Comparison of Service Levels

Service Level Indicator (SLI) Service Level Objective (SLO) Service Level Agreement (SLA)

The actual performance that

comprises key measures like

the following:

• �R esponse time including

wait time

• �E rror rate in requests per

second

• �R equest rate in requests

per second

• U tilization percentage

Define goals for the team that

must meet the SLA. A few

targets can be as follows:

• �D efining lower and upper

bounds for SLIs

• �D efining a target wherein SLI

needs to be less than this

target

An external-facing agreement

shared with the customer that

lists the commitments that the

teams agree to

Chapter 6 Introduction to Agile Frameworks

146

•	 Error rate: Requests to service failure

•	 Latency: Time to respond

•	 Traffic: Amount of service load

•	 Saturation: Up to what duration the resources will last

•	 Automation: Development velocity can increase when automation

tools are leveraged (which helps in aligning with the DevOps

principle of continuous integration, continuous testing, and

continuous deployment). Teams need to look at the processes in

their product lifecycle that need to be automated and optimized.

This demands investment in new tools and introducing practices like

shift-left testing, automated deployment patterns, etc. Automation

helps teams to reduce toil and increase team velocity. SREs should be

encouraged to identify and implement automation solutions across

different areas that will help them improve on turnaround time. For

example, playbooks or runbooks are documents that list and describe

diagnostic and remediation procedures so that everyone in the team

is aware of what needs to be done when a situation presents. This

results in lower mean time to resolve and standardization in action

across various resources and teams. It is important that the playbooks

are maintained and updated based on changes in infrastructure and

application landscape and versions. Modern digital organizations

have now moved to executable playbooks that are configured as

playbooks in runbook automation or configuration management

tools such as Operations Orchestrator, Ansible, Puppet, and Chef.

A new breed of AI-driven intelligent automation tools like DRYiCE

iAutomate provide capabilities that leverage NLP and AI technologies

to further enhance the runbook automation capabilities to rapidly

deploy the right runbooks in the environment and help in the

automatic maintenance of the runbooks on an ongoing basis.

•	 Release engineering: As products and services are released frequently,

managing releases becomes a tedious task. Irrespective of the number

of releases, SREs need to ensure that the releases are consistently

deployed (aligns with the DevOps principle of continuous

Chapter 6 Introduction to Agile Frameworks

147

deployment) through an optimized process workflow that leverages

automated tools as well. For faster deployments, it is important to

agree on and practice guidelines across different release types. This

is possible when teams use the same set of standards, policies, and

protocols for releasing their services. As releases grow in number,

SREs should monitor the release statistics and analyze the release

strategy in case it needs to be changed. For example, canary releases

make rollouts safer and faster. With canary releases, the new features

are introduced to a small set of users. This results in feedback on

performance and on the user experience of the application, and once

the release is successful, the new features are released to all users.

This method de-risks the releases as all users are not simultaneously

impacted. Canary releases cut the mean time to detect (MTTD) an

issue by quickly surfacing issues in applications when they are used

by real users (a subset of the total population of users).

•	 Simplicity: Reliability often is complemented with simplicity. Any

service that is simple to deploy, monitor, repair, and improve is a

reliable candidate. Simple systems are easy to manage and update.

SREs can model systems to analyze areas of complexity and find ways

to simplify it. Teams should be encouraged to collaborate (aligns with

the DevOps principle of collaboration) and design simple systems

and also should be made aware that complex systems demand huge

investments, such as removing nodes and connections that are not

needed.

In addition to these seven principles, there are other principles

too that are important for SREs to practice.

•	 Treat operations as a software problem: This aspect aligns fairly

well with the “no more silos” principle in DevOps, which aims

to bring together infrastructure and applications. When SRE was

first introduced, not many organizations would have software-

defined infrastructure and infrastructure as code; however, today

this principle can be adopted as technology has evolved to support

infrastructure changes as software changes.

Chapter 6 Introduction to Agile Frameworks

148

•	 Find error budgets: This is another important principle in SRE

operations, and this aspect aligns fairly well with the “metrics”

principle in DevOps where the aim is to capture the metrics to

improve. The goal of the SRE is to deliver services that are well

within the error budget; this serves as a guiding metric for the

SREs to determine both the architectural and operations aspects

of services. The SREs balance the agility to deliver the features fast

without compromising availability. The error budget is used to keep

a check on releases and velocity, which means that in case there is

no budget for errors, the SRE team will put a stop to releases that can

impact availability further. SREs need to discuss the error budgets

with the product management team and define availability targets

for a service. They also need to discuss additional costs such as

adding more fault tolerance (if need arises) or things like reducing

frequencies or testing times.

Interestingly, a system’s acceptable risk dictates the SLOs, and

the SLOs in turn drive the error budgets. For example, if a service

incurs too much downtime, then one should reduce risk to

remain within SLOs. Based on the product features, availability,

and usage, one should define the right SLOs. For example, a 99.9

percent SLO indicates that the system should be available for 99.9

percent of the time. So, in a month, only 0.1 percent downtime is

allowed, and if we calculate this in minutes, it comes out to be as

follows:

= [0.001] * [30 days] * [24 hours] * [60 mins]

=43.2 minutes of downtime allowed in a month.

So, if the system goes down for more than 43.2 minutes, then

this will breach the commitments. Hence, it is important to

understand the product offerings and the service availability

levels, and this will help in calculating the error budgets. Let’s

explore further with an example where availability and SLOs are

defined, and we need to find the error budget.

Chapter 6 Introduction to Agile Frameworks

149

	 a.	 System availability = 90%

	 b.	 SLO = 80%

	 c.	 So, the Error budget = Availability – SLO; which when

calculated with values from (a) and (b) .i.e. 90% - 80%; results

to 10%. Thus, the error budget value is 10%.

	 d.	 This when translated into months results into 72 hours in a month.

This means that even if the product is down for up to three days in

a month, it will not breach the SLAs.

•	 Reduce the cost of failure: This aspect corresponds to the two guiding

principles in DevOps that are “gradual changes” and “failures are

normal.” The SRE team focuses on resolving the problems early in the

cycle of development so that the failures do not impact production

systems. There are various processes and practices that the SRE team

uses to achieve this end objective. Involvement of SREs in the design and

architecture stages helps to proactively plan for high availability and in

the case of a failure restore quickly and thus reduce the cost of failure.

•	 Roll back early, roll back often: When errors are found or suspected,

the first thing the team does is to roll back to the previous version and

then continue to explore the problem. Thus, the first step is to recover

the system and then focus on exploring the problem and undertaking

problem management. This results in a higher availability of systems

and services and a lower mean time to resolve. See Figure 6-20.

Figure 6-20.  Did you know?

Chapter 6 Introduction to Agile Frameworks

150

In recent times SRE and DevOps have become extremely important and sought-

after skills in organizations. Everyone has their own definition of what the role or

responsibility of this team is, and there are various team structures in which these

teams are structured. There is no universal definition of a DevOps engineer or an SRE,

and there are overlaps in skill set and responsibilities. Let’s try to capture the two roles,

including the differences and overlaps between the two roles.

SRE and DevOps Structures

In the SRE team, it is expected that every team member is skilled on all areas and

becomes multiskilled or E-shaped in terms of skills. In DevOps it is about different team

members with different skills coming together to deliver an integrated development

and operations experience with the help of culture, processes, best practices, tools, and

technologies.

The team structure varies from company to company and in general has the

following specialists:

•	 Product owner: This person is the interface between the business and

the product and manages the product roadmap and strategy for the

product.

•	 Infra architect: This person is responsible for the cloud and noncloud

infrastructure architecture including networking, storage, compute,

and other elements.

•	 Software developer: This person creates code and test cases, there

may not be a separate testing team, and developers may double up as

testers writing automated tests.

•	 QA engineer: This person is responsible for the overall quality of the

product and ensuring the QA processes of third-party testing, etc., are

handled.

•	 Release manager: This person is responsible for the release

management function including release plans and scheduling.

•	 Administrators (system and application): This person is in charge

of monitoring, management, and patching activities along with

automation for provisioning and deprovisioning of infrastructure and

availability of these systems.

Chapter 6 Introduction to Agile Frameworks

151

As can be seen from the previous roles, the sysadmin role morphs into the SME role

in organizations where the strategy is to walk the SRE path. Also, when SREs are part of

the DevOps teams, there may be some activities that are done by other teams and not the

SRE team, especially releasing a deployment.

Tools and Technologies in DevOps and SRE Domain

Since there is an overlap between SRE and DevOps and since the way teams and

individuals are structured around groups is different from organization to organization,

the following skills are essential for both teams. The only difference will be that the

resources in the SRE model may be cross-skilled across some of them, while in the

DevOps model, the culture, best practices, and guiding principles will allow the DevOps

team to seamlessly handle the entire spectrum of technologies required to deliver an

end-to-end service. See Figure 6-21.

Containers and microservices: Docker and Kubernetes services are

available as SaaS offerings from various Cloud providers like AWS,

GCP, and Azure.

Figure 6-21.  Evolution of SREs

Chapter 6 Introduction to Agile Frameworks

152

Monitoring tools: Tools like Prometheus, Zabbix, etc., are

important elements of the service that are required to deliver

ongoing operations. Various organizations may be using tools

from COTS vendors like CA Broadcom, IBM, Microfocus, BMC,

Solarwinds, and Zenoss.

CI/CD/testing tools: Tools like Jenkins, Git, Gitlab, One Test

Suite, Selenium, AppScan, Whitesource, SonarQube, Microsoft

TFS, Azure DevOps, and other cloud-native DevOps tool chains

along with deployment and configuration management tools like

Ansible, Puppet, and Chef fall into this category.

Infrastructure as code (IaC): Native cloud technologies like Cloud

Formation templates, Deployment Manager templates, and ARM

templates along with third-party tools like Terraform, Puppet,

Chef, and Ansible are the backbone of automation. Along with

these, AI-driven COTS tools like DRYiCE iAutomate and DRYiCE

MyCloud are gaining traction with customers.

Resilience testing: This is a key tool in the hands of the SRE teams

especially. These tools provide end-to-end testing on production

systems to test their resilience by bringing down components and

testing if the service or application withstands the failure of these

components. Chaos Money originally created by Netflix is a widely

used tool.

Figure 6-22.  Did you know?

Chapter 6 Introduction to Agile Frameworks

https://www.terraform.io/
https://puppet.com/
https://www.chef.io/products/chef-infra
https://www.ansible.com/

153

�Balance Between Dev and Ops Work
When you move to a DevOps mode of operations and integrate the teams or make

developers responsible for all kinds of operations, another challenge arises. The

developers will now get overwhelmed with unplanned work, customer escalations,

availability, and downtime of infrastructure and regular maintenance jobs. This may

lead to dissatisfaction in the development teams, and the teams may also get distracted

from the core job of developing features. Thus, SRE plays an important role here. They

focus on the resilience aspects and also work on monitoring and ensuring the entire IT

landscape from infrastructure to applications is up and running.

In this model, since the availability SLAs are well defined and there is an error budget

defined, the focus of the SRE on availability and resilience ensures that prioritization is

done systematically through metrics. Another point to note here is that the error budget

or breaches of availability targets would automatically prioritize system stability over

feature releases, and the focus of the team would be to ensure that the releases that

may hamper availability and impact the metrics are planned and coordinated with the

development teams.

An Agile-based Scrum backlog is used by the SRE teams for automation and

engineering activities such as problem management and change management. Also,

ITIL-based SLAs related to availability and prioritization using priority and severity

(along with time to respond and resolve) are metrics used to prioritize the incidents

happening in the IT landscape. This creates a balance between the two and ensures

agility and speed while keeping the lights on and ensuring the services are available for

the end consumers. The following method defines the priority:

•	 Pull things from the triage queue.

•	 If there are no triage items, work on the next item from the sprint

backlog.

At first the teams may have a conflict between the SLA-driven workflow and the agile-

based sprint work. Questions that you may find during the initial stages are “What if there

is a lot of support work; how would we get time for sprint deliverables?” Once you are able

to overcome the initial challenges, you will soon find that the work will balance out on a

longer timeframe, and the teams will be able to complete the sprint tasks as well as take

Chapter 6 Introduction to Agile Frameworks

154

care of the flow of work. The flow of work becomes more predictable as the teams become

familiar both with the technical environment and with the new process. Since the SRE

sprints will include automation activities, you will slowly start seeing the benefits of this

focused approach where the availability and performance issues become lesser and lesser.

The problem management function typically takes a backseat in the incident management

and service request management focused delivery gets the required attention in the SRE

model and eliminates repeated work and repeated incidents.

Since the flow-based work is unpredictable and there are periods where there may

not be any incidents or service requests to pull, the SRE teams are able to utilize the time

for running the sprints for automation and service improvement.

Another important aspect to consider when mixing flow and sprint-based work

is that if an engineer working on a sprint is interrupted, often then there is a waste of

time for him to restart the work from wherever it was left, so some intelligent routing is

necessary to balance the sprint work and workflow based on the availability of resources

and the flow queues to reduce the number of interruptions that an engineer working on

a sprint deliverable will face. The rotation of resources to carry more sprint work versus

the flow is a technique to achieve this objective. Ultimately, the overall utilization of

resources in this model will be much higher than with two different teams doing the

sprint and the flow-based work, and the focus on continual service improvement will

result in an accelerated path to maturity and high availability with fewer incidents.

In this model, you will achieve the following:

•	 SLAs for workflow improve along with other metrics like mean time

to respond and resolve.

•	 Sprint velocity improves as teams are able to better predict the

workload and plan.

•	 There are improved satisfaction scores for developers and

administration teams.

•	 Customer satisfaction scores improve.

•	 There is a higher level of team motivation and collaboration.

Chapter 6 Introduction to Agile Frameworks

155

�Summary
All the frameworks covered in this chapter have a unique usage and adoption pattern.

Any organization that intends to adopt one of these frameworks first needs to identify

the framework that will best suit their needs. This is dependent on multiple factors

such as team structure, distribution, composition, technology landscape, release cycle,

agile competency, and understanding. Such an in-depth analysis helps organization

make the right choice and then drive toward defining the roadmap for its adoption at

the enterprise scale. This journey needs to have milestones and metrics to measure

the adoption and success. Enterprises should also plan for trainings and mentoring for

their teams so that they can avoid resistance. Teams should be made aware of the new

engineering technologies like infrastructure as code, resiliency testing, monitoring and

observability, and also DevOps-led tooling for CI/CD so that they feel their importance

in the system and contribute in the transformation. Once the framework has been

identified and teams start out on their new journey, they need to identify how they will

operate. The new ways of working needs method definitions and process refinements.

To work in agile infrastructure operations, we would need new team structures, roles and

responsibilities, process changes, new ways of working, and tools and techniques. We

will deep dive on these methods and their usage in the next few chapters.

Chapter 6 Introduction to Agile Frameworks

157
© Navin Sabharwal, Raminder Rathore, and Udita Agrawal 2022
N. Sabharwal et al., Hands-On Guide to AgileOps, https://doi.org/10.1007/978-1-4842-7505-4_7

CHAPTER 7

Using Agile for
Infrastructure Operations
In this chapter, we will detail a step-by-step approach for adopting agile for

infrastructure operations in an enterprise. The topics that will be covered in this chapter

are as follows:

•	 The starting point

•	 Summarizing the transformation plan

We spoke about how the IT world is evolving and shifting from traditional operating

structures to new agile structures in the infrastructure operations domain. We also

looked at various agile frameworks and methods that are being adopted by enterprises

that are upscaling their infrastructure operations teams to new roles and responsibilities.

While agile is the way forward, the purpose is to provide a new way of operations that

will enable and empower teams that in turn will deliver quickly in iterations. But, a key

question you will have is, “where do you start from?” This is a question for organizations

running complex and large infrastructure and cloud operations that want to move

quickly into agile infrastructure operations to meet the ever-increasing demands of

customers. Other reasons for such enterprises to move to a new model are moving up

the maturity curve and getting benefits of higher availability and resilience while still

saving on costs. Implementing agile infrastructure operations provides all of the previous

benefits while also making the teams more collaborative, cohesive, productive, and

motivated.

https://doi.org/10.1007/978-1-4842-7505-4_7#DOI

158

�The Starting Point
To being with, it is important to find where we stand in terms of the maturity of

processes, functions, tools, and resources by verifying the effectiveness of current

methods and processes. This is where self-assessments come to the rescue. After an

assessment, it is time to write out a plan based on the current gaps and learnings and

start the transition with small steps to begin with team-level advancements toward the

new working methods. See Figure 7-1.

But before all this, there needs to be need, commitment, and organizational buy-in

for the following (see Figure 7-2):

•	 Agility is important, and every department in the organization should

prepare for it.

•	 We need to ensure resiliency in our systems and be ready to fail and

recover quickly.

•	 There is also a need to relook at the team size and the technologies at

play.

•	 Focus on real-time performance analysis and agree to continuously

monitor it.

•	 Encourage teams to embrace the new change and adopt agile ways of

working.

Figure 7-1.  Starting point for AgileOps

Chapter 7 Using Agile for Infrastructure Operations

159

Implementing AgileOps demands upskilling, better collaboration techniques, and

investments in the right tools and technologies so that teams are ready to adopt and

practice the cultural shift.

Let’s look at some of the building blocks that will enable organizations to adopt agile

culture and practices.

�Adopting the Right Agile Framework and Methodology
Based on an organization’s team structures, role definitions, responsibilities, technology

platforms in use, etc., organizations should select the right agile framework as described

in Chapter 6. The identification of the right framework is important and serves as the

foundation block for the new journey. This framework can have teams running in

different agile methods. While there are various agile methods available, both Scrum and

Kanban have been the commonly used methods when it comes to software development

and infrastructure operations. These methods provide visibility at the program level as

well as the team level, and they foster the culture of “pulling work” rather than “pushing

work.” See Figure 7-3.

Figure 7-2.  Defining new ways of working

Chapter 7 Using Agile for Infrastructure Operations

160

Just to recap, Scrum is a method suitable for teams that need to deliver work in fixed

periodic intervals, and Kanban is suitable for operations teams where issues are to be

resolved immediately. So, before we start on the agile journey, it is important to identify

the right methodology for the team based on the deliverables from the team. If the team

is to deliver work in fixed intervals called sprints that could be an application service

or infrastructure as code, then Scrum is the right method. Both methods should be

evaluated thoroughly. Teams can also adopt both methods; for example, 80 percent of

the team focuses on operations tasks and adopts Kanban, while the other 20 percent of

the team focuses on new work that is to be delivered every two weeks. Here Scrum is the

ideal fit. The combination of Scrum and Kanban is called scrumban, which leverages the

best of both methods.

It is important that teams are also mentored on using these methods in the right

way. Just adopting the method for its namesake will not help. It has to be practiced in

totality. It is not about renaming existing meetings as standups and Scrum meetings but

changing the culture of an organization using proven organizational change management

techniques and practices. Expecting cultural change in a short span of time is unrealistic;

hence, we need to plan this change in a stepwise fashion. Teams need to “pull” work

instead of “push.” They need to be encouraged to become accountable for the work items

and ensure that they get delivered without any showstoppers. This is where the culture of

Figure 7-3.  Agile models

Chapter 7 Using Agile for Infrastructure Operations

161

learning and nurturing agile methods becomes important. We need to understand that

the first step is unlearning the culture, processes, and ways of working and then move on

to learn the new culture and ways of working; since it involves not technology but people,

it is a slow process. We need to define a step-by-step journey where we can get people to

implement new ways of working and achieve a higher level of maturity.

For an IT operations teams where tickets are submitted in tools like ServiceNow or

BMC Remedy or Atlassian Jira, etc., and they get routed to team leads who then assign the

tickets to respective specialist for resolution, Kanban is an ideal method. In comparison

to the traditional ops where tickets are pushed, in Kanban the tickets are picked up by the

team specialists. This culture shift demands cross-skilling within the teams so that the

knowledge is not restricted to a set of specialists. In fact, the knowledge is available with

the team. Some organizations call these cross-skilled specialists site reliability engineers

and are also renaming their groups as squads. However, just renaming a team or a set of

functions to a different name doesn’t make operations agile; there has to be a step-by-step

journey to achieve maturity in agile methods and practices.

So, what all is needed to adopt and implement agile?

�Identifying the Agile Methodology
Assuming that the framework has been selected, the agile method needs to be

shortlisted. We covered the agile methods in detail in Chapter 5. Teams should evaluate

the right method that will suit their organizational needs based on their current level

of maturity, team composition, outsourced versus insourced environment, and other

parameters. The commonly used methods are Scrum, Kanban, and the hybrid version

called scrumban. Based on the current working style and expectations, the right

method should be selected for the team. Organizations can pilot a method with one

team, evaluate its efficiency, and then later expand. Once teams on the ground get used

to the agile working style, then this can easily scale at the enterprise level. Large and

complex organizations may end up with a mix of agile methods in different departments,

geographies, or parts of the organization. Efforts should be made to build synergies and

common best practices with some level of central guidance so that the differences are

minimal and are based on the genuine needs of a particular department rather than

because of personal preferences. We need to start small and then expand; there may be

challenges on the way. When that happens, go back to the drawing board to use the Agile

Manifesto, principles, and cultural guidance from DevOps and lean and you will be able

to solve these challenges.

Chapter 7 Using Agile for Infrastructure Operations

162

�Identifying Tools for Implementation
Similar to the methods and frameworks, multiple tools are available that can be

leveraged to help teams practice agile ceremonies, track work, have work visibility, etc.

Table 7-1 describes the key features. See Figure 7-4.

Table 7-1.  Agile Project Management Tools

Vendor Tool Key Features

Atlassian Jira Agile • O ffers templates for agile project adoption

• �I ntegrates with other Atlassian tools like BitBucket for version control,

Bamboo for continuous integration and deployment, HipChat for

collaboration, Confluence for documentation, etc.

• P rovides excellent reporting and dashboarding capabilities

• A vailable as on-premise as well as SaaS solution

Collabnet VersionOne •  Designed for agile and lean implementation

• O ffers the openAgile API to integrate with other tools

• A n enterprise application lifecycle management tool

Planview Leankit • I mplements Kanban

• E mphasizes lean principles

• � Visually communicates blocked work and identifies process

bottlenecks through effective workflows

• �O ffers integrations with other enterprise-grade tools like ITSM,

PPM, etc.

Figure 7-4.  Did you know?

Chapter 7 Using Agile for Infrastructure Operations

163

�Identifying the Need for Extended Integration
While there are stand-alone tools for agile management, it is important that this tool

integrates with other tools that are used in product development. For example, in most

organizations, development teams use Jira, and their operations teams use ServiceNow.

To bridge the gap between both these teams, we need to ideate on how to stitch the

process gaps and encourage teams to look at integrated dashboards and workloads.

This is possible if both these tools are integrated, bringing in bidirectional traceability.

Both teams have visibility and share common processes as well. Yet another use case is

wherein stories are to be linked with code files. If the source code is stored in tools like

Git or BitBucket, then this definitely calls for an integration between the tools. In the end,

product teams get end-to-end visibility of their work items. See Figure 7-5.

�Upgrading Teams on Using the Agile Approach
Teams need to be coached when adopting an agile method or tool. It is important that

teams are supervised and mentored by an experienced agile coach who helps them use

the tools effectively and efficiently. Certified specialists in agile and DevOps will serve

Figure 7-5.  End-to-end integration between tools

Chapter 7 Using Agile for Infrastructure Operations

164

as excellent coaches or mentors for the teams. Such experts also help in articulating the

roadmap, measuring the maturity, and continuously monitoring the agile adoption.

Since there is little guidance available on using agile for cloud operations and integrating

with DevOps and site reliability engineering, there may be gaps in skills, but this book

can act as a best-practice guide for you to implement your plans.

�Redefining Team Roles and Responsibilities
New methods and frameworks may meet resistance from employees, and this can be

softened with the help of organizational change management techniques and practices

and the appreciation of the fact that the journey toward agile is a team effort. New roles

should be introduced within the team to increase enthusiasm. Team members should be

given a chance to call out their interests and move to new roles. New responsibilities will

encourage team members and create excitement. As an example in the infrastructure

operations space, the service request manager can move to a product owner role with

training of best practices for using agile in operations. With new roles, the concepts of

self-management and transparency should be adopted as these are the core principles of

agile.

�Nurturing the Culture of “Pulling Work”
Another aspect of strengthening agile practices is the art wherein team members pull

work instead of waiting for someone to give them work. This is the key difference in the

way of working between traditional models and agile. For ages, team hierarchies were

created that followed a top-to-bottom approach. In the agile world, hierarchies should

be minimized, and any corporate structures should motivate teams toward adopting the

change. The target should be to slowly evolve into teams that are self-sustaining.

�Baselining the Initial Cycle Time and Related Metrics
If agile is a journey, then we need to track the progress of this journey. When combined

with DevOps and site reliability practices, this becomes a journey for continuous

improvement. To track such progress, self-assessment needs to be done regularly.

This can be done at the team or product or enterprise level. At the team level, we

need metrics, and this is where we should baseline metrics and keep revisiting them

Chapter 7 Using Agile for Infrastructure Operations

165

frequently to see if the team is benefitting from the adoption and if there is a need to

change course. These metrics can include simple measurements such as the number of

work items or the time taken to implement a story. If the number of work items doesn’t

increase over a period of time, then this may indicate that either the team is not able to

take the load or something needs correction. A detailed analysis of the process following

the lean principles will help in identifying root causes and in taking corrective action.

Figure 7-6 explains a sample way to evaluate the progress of a team running in

Scrum mode. This team manages four applications, and each has features, stories, and

bugs. Stories further have its associated tasks and complexities. To begin with, teams can

capture the metrics every two months against a set of team members. This data helps to

analyze if the number of features and story points being delivered is increasing or not,

which means the team is able to absorb more work since they are gaining experience.

On average, if the number of features and story points delivered is increasing with the

same team size but the number of bugs is decreasing, then this indicates that the team

is able to deliver more with improved quality. This is also called the team throughput/

velocity, and it should be monitored for continuous improvement. If the throughput/

velocity is not improving, then the Scrum master should analyze the reasons and

plan for appropriate steps in consultation with the product owner. There could be

various reasons that affect a team’s throughput/velocity like limited competency or

dependencies, complexity of work, etc.

Figure 7-6.  Sample metrics tracking

Chapter 7 Using Agile for Infrastructure Operations

166

�Identifying Candidates for Self-Servicing
While the teams gear up for the new norm, it is important to also set down the goals

and vision statement for the team. A mission statement defines the organization’s

work, objective, and its approach to follow it. A vision statement describes the desired

future of the organization. For an operations team, the vision and mission statement

could include elements from availability, resilience, agility, security, cost of operations,

customer satisfaction, business growth, etc. The mission is something that needs to be

accomplished; thus, the broader mission needs to be translated to granular use cases

that form the backlog for the agile operations team. See Figure 7-7.

�Creating Team Dashboards for Visibility
When a coach joins the team, they need to set up the initial set of reports and

dashboards for the team to refer to and set a baselines. These dashboards should reflect

real-time project statistics and help the team to pull work. The metrics that are baselined

should be made visible on these dashboards. Dashboards can be layered out as well to

address different stakeholders. For example, tools like Confluence can be leveraged to

create and display program and team-level dashboards. These dashboards also serve as

quick reference points in various ceremonies.

�Piloting and Extending the Approach
A big-bang implementation may not be helpful at times since it can create chaos in

the organization. Hence, it is good to start small and then expand. Nevertheless, it is

the teams that need to understand the need for being agile. The program management

office along with the organization change management teams play a vital role in tracking

the transformation program and extending its realm. This is where organizations

can identify a group that should be piloted first, and then based on the learnings, the

practices are extended to other teams. The pilot always acts as a learning platform for

Figure 7-7.  Sample use cases

Chapter 7 Using Agile for Infrastructure Operations

167

other teams. Selecting the pilot team is also a key step toward defining the success for

the transformation. Avoid selecting a team that is working on a critical environment

or an application. Select a low to medium-level team that has time to upscale and

adopt the new norms of working. The learnings from this pilot should be documented

and showcased in the organization, and other teams can see the success and start the

journey toward becoming agile.

�Continuously Measuring Metrics and Replanning
The initial time period will have hurdles for the team, but to ensure that the team runs on

the right track, the coaches should revisit what was started and how the team is evolving.

This will help them change the course of action as needed and also identify missing gaps

and learn from these gaps. Feedback from other teams and management are also key

to observing the performance. As the changes are being revisited, the scope should not

be just on tools and automation; it should also look at areas that can be streamlined, in

other words, areas wherein a team needs skilling.

�Summarizing the Transformation Plan
The steps mentioned earlier can be rolled out in three phases, as shown in Figure 7-8.

Figure 7-8.  Phased-wise transformation plan

Chapter 7 Using Agile for Infrastructure Operations

168

�Phase 1: Pilot and Accelerate
This initial phase is a foundation pillar that serves as the building block. It usually

stretches between two to four months, but this may get extended depending on multiple

factors. To ensure that this phase is managed and implemented successfully, it is

important that the right team for piloting is identified, and the team is mentored with all

the required skills and practices. See Table 7-2.

Table 7-2.  Milestones

Milestone Description

Identify gaps Benchmark the current support model and ways of working in the operations

area. Analyze on how teams collaborate, what processes and tools are

leveraged, and what hinders faster delivery. The identified gaps across

people, process, and tools are consolidated, and these act as important

inputs to draft a roadmap for continuous improvement that gets driven

through agility.

Apply assessment Create a roadmap that addresses the gaps. Identify a team that should be

piloted with the new agile model. These new teams will be called squads. It
is important that the roadmap focuses on bridging the gaps that have been

assessed.

Train the team
(squad)

Provide training on agile methods and best practices to the identified

operations team. For example, if Kanban has been identified as the target

model for operations, then mentor and enable the team to learn the new

terminologies and how to apply the new method. The new squad should be

encouraged to pull tickets and work on them instead of leads pushing tickets

to them. It is good to have a coach during the initial phases who can guide

the team and suggest best practices.

Create Kanban
board

Tools like Atlassian Jira, VersionOne, etc., help teams to work with agile

methodologies. These tools have built-in templates that can be customized

easily as per the needs. Once the tool has been identified and installed, set

up a new Kanban project and provide access to the project to the team.

(continued)

Chapter 7 Using Agile for Infrastructure Operations

169

Table 7-2.  (continued)

Milestone Description

Pilot severity 3 and
4 tickets

Once the squad is ready to operate in agile mode, initiate the new model for

severity 3 and 4 incidents or service requests. As tickets get into the backlog,

the squad will be able to view the backlog and pull tickets/incidents based on

their bandwidth. The coach or lead can drive the flow of tickets with the team

and observe areas that need attention like members facing issues in moving

tickets from one state to another or members having issues in pulling tickets

and understanding the new process.

Identify new skills As the new squad team learns to work in the new working model, leads

get to know the team velocity and identify areas where the squad needs to

improvise. There could be scenarios wherein organizations moving to the

cloud also need to be upskilled to support the new platform; hence, along

with agile methods, teams should be trained on new technologies like the

cloud and infrastructure as code.

Cross-skill As squads get upskilled, they also need to be cross-skilled. For instance,

team members should understand the complete process flow on how

infrastructure is set up and how related components are created and tracked.

Another example is that there could be multiskilled resources particularly

in the cloud computing domain where each resource can be cross-skilled

in cloud operations, cloud architecture, cloud deployment, networking, and

platforms.

Apply automation One best practice to drive agility in infrastructure operations is to automate

whatever is possible. Adopting infrastructure as code is a good start that

standardizes the process for infrastructure deployments and avoids any

manual errors during setup and foundation build. Leverage out-of-box tools

that speed up the automation process.

(continued)

Chapter 7 Using Agile for Infrastructure Operations

170

�Phase 2: Expand and Optimize
Once the pilot is successful with one team, it is time for it to be extended to other

operations teams. In fact, the pilot team serves as an excellent medium for others to

understand the pros and cons of agile operations. As the name suggests, this phase

focuses on extending the new ways of working to other teams and checks on areas

that can be optimized. Optimization may be done by adopting the right tools and

automation. This phase usually extends between four to eight months but may change

based on the team strength and capacity. The key practices in Table 7-3 are added and

matured.

Milestone Description

Baseline SLAs and
KPIs

To measure success, it is important to note the path that was chosen. To

track agile adoption, it is necessary that both SLAs and metrics are identified

and baselined. These values should be regularly visited to ensure that there is

an improvement with the implementation of the new method. For example, to

begin with, baseline the lead time taken to solve a ticket and then track this

lead time frequently to see if this is improving. If earlier it was eight hours,

then whether it is being reduced. Obviously, there will be some caveats like

complexity and type of the tickets. But measuring metrics periodically helps

teams to review their progress on the path toward automation and agility.

Execute ops in new
model

Once the pilot model matures, then extend this new working model for other

ticket categories. The team may continue to operate with the older method in

parallel for some more time until they switch over to the new model. Such a

working model is called Bimodal IT Operations - where the traditional and the

new working models exist together for sometime.

Inspect and adapt Continuous feedback is an essential part of this journey. As the team gets

used to the new method, metrics, and ways of working, it is important to

analyze and get their feedback on what works best and what doesn’t, what

needs to be corrected, and what should be added. This becomes a good case

study for the rest of the teams that can refer, learn, and scale accordingly.

Table 7-2.  (continued)

Chapter 7 Using Agile for Infrastructure Operations

171

Table 7-3.  Key Practices

Focus Area Description

Add tribes In phase 1, we define the squad teams; these are self-organizing teams. When

similar squad teams work together, they form a tribe. So, a tribe is a collection of

squads. As the methodology extends to other teams, it is important to define a new

team structure with roles and responsibilities.

Define a
common
model

Collaborative team efforts lead to agile success. As teams scale on agile methods

and define new team structures (squads, tribes, chapters, etc.), it is essential that

they share a common model for reference. This helps in bringing teams together

and fosters a culture of learning. The model of operations should be a simplified

version that is easy for teams to adopt and scale.

Align
teams with
capabilities

Introduce tribes in other areas and align them with capabilities for quick response

times. Continuous feedback from capabilities will enable tribes to improvise as

needed.

Adopt lean
principles

As more and more teams adopt agile and implement automation, there is a need

to embrace lean principles. The five principles of lean (define value, map to value

stream, create flow, establish pull, and pursue perfection) focus on generating

value. Tools like HCL Accelerate can be leveraged for value stream management.

Adopt a single
backlog

Initially when squads are onboarded, each will have their own backlog. But as

tribes are formed and teams get cross-skilled, leads and coaches should aim to

have a common backlog. For example, there is one common backlog for one tribe.

Eliminate
waste

As lean principles get implemented, waste has to be removed. This is where

automation plays a crucial role. Leads should monitor areas that if automated

would benefit them. Tracking waste acts as another factor for driving success in

the agile adoption.

�Phase 3: Sustainment
The last phase is an ongoing phase—a phase for continuous learning and improvements.

This phase is about matured cross-skilled teams that are highly efficient. While the team

now has matured on the infrastructure and cloud operations, the same team should expand

their horizons and look at automation opportunities that facilitate speed and resilience.

They slowly need to identify more squad teams and create new roles and responsibilities.

Chapter 7 Using Agile for Infrastructure Operations

172

The following key factors drive this phase toward maturity with continuous

improvements:

•	 Self-service: Teams can scale up and down environments with

infrastructure as code templates. This is like when testers are

empowered to build and decommission test environments in their

pipelines without being dependent on operations teams to enable

environments. This reduces wait time to test and deploy new features.

•	 Zero-touch deployments: These are made possible by end-to-end

automation of CI/CD pipelines. Teams should be encouraged

to practice pipeline deployments in production rather than

manual deployments. An automated deployment not only avoids

erroneous actions but also speeds up delivery time and shortens

feedback loops. This frees the team to focus on innovative areas

such as strengthening security and increasing coverage on testing,

compliance, and guardrails.

•	 Standardization and optimization: As more and more opportunities

are identified and implemented with automation, teams become

more efficient, processes get more optimized, and standardized

teams emphasize delivering reliable and resilient systems.

•	 Continuous assessments: Remember when we spoke about

benchmarking the team status before getting started? So, we have

the initial metrics, and now we should re-assess. The team needs to

collect feedback on how it has performed and how it can improve.

An assessment in this case is helpful; it enables teams to revisit their

team structure, process workflows, methodologies, metrics, and skill

levels. This helps them to identify and automate new opportunities

to increase efficiency and update the course of action as required.

Enterprises should adopt an assessment plan that is baselined and

revisited regularly, say, every six months. Later, every iteration of this

assessment is scored and then compared with the previous rating or

score.

Figure 7-9 displays a sample assessment that has five stages, and each stage gets

tagged with a set of defined practices. For example, a team assesses and baselines itself

at Level 1 (since it is completely traditional). But after six months, they progress toward

Chapter 7 Using Agile for Infrastructure Operations

173

Figure 7-9.  Continuous assessment sample output

Level 2 and slowly keep progressing thereafter. The Initializing phase at Level 2 indicates

that everyone in the team knows the agile concepts and understands its significance

as well as have started leveraging agile methods like using Scrum boards, ceremonies,

etc. Such an assessment should be carried out regularly to capture the current maturity

levels and help teams to plan for changes.

•	 Conduct workshops to mentor on the purpose of being agile and on

adopting automation for improving team performance.

•	 Revisit the organization roadmap and milestones.

•	 Plan for new competency programs.

•	 Identify applications that need to be modernized.

•	 Invest in new tools and automation.

•	 Standardize the tools platform across the lifecycle.

•	 Define an end-to-end integration and pipeline strategy.

•	 Identify processes for automation and optimization.

•	 Extend support and communication to larger groups.

•	 Track and improve the team’s throughput/cycle time and other

metrics.

Chapter 7 Using Agile for Infrastructure Operations

174

Table 7-4 describes the maturity assessment levels.

�Summary
A journey to agile infrastructure operations is a planned, step-by-step process of moving

teams toward agility, automation, and resiliency. A successful plan should embed

motivation in teams and scale up as they grow. So, it is good to pilot a few teams first

and then extend this to other teams in the operations domain. Of course, there will be

failures that are indicators that the plan needs a change. There could be multiple phases

driving the agile plan, but this should be designed based on the organization charter and

expectations. Organizations should aim to achieve the following set of goals:

Table 7-4.  Maturity Assessment Levels

Level Name Key Features

1 Traditional •  Waterfall approach

• S iloed and reactive teams

•  Multiple tools with no/limited integration

2 Initializing •  Understand agile and related concepts

• I dentify standard tools for integration

• T eams start practicing agile ceremonies

3 Emerging • G etting started with pipeline development

•  Baseline metrics for team performance

•  Basic infrastructure operations automated

4 Scaling/Growing •  Define service catalog

• I dentify use cases for automation

• A utomated delivery pipeline

•  Collaborative and proactive teams

• E xtend infrastructure as code with development pipelines

5 Sustainable • S elf-service catalog publication

• S elf-remediation

•  Continuous assessment and improvement

•  Moving toward AIOps

Chapter 7 Using Agile for Infrastructure Operations

175

•	 Short-lived iteration-based workloads

•	 Standardization and optimization

•	 Self-service

•	 Automation

•	 Continuous monitoring and collecting feedback for growth

Assuming that the infrastructure operations team has adopted Kanban and the new

operating model is moving forward on the maturity curve, we need to analyze and move

toward the next step in the transformation journey. Now is the time where we need to

introduce infrastructure as code and enable the design and integration of infrastructure

pipelines with application pipelines. This step can be done in sequence or can be done

in parallel based on the team bandwidth. We will now deep dive into the concepts of

infrastructure as code and understand the key building blocks that are needed for using

the agile-Scrum method.

Chapter 7 Using Agile for Infrastructure Operations

177
© Navin Sabharwal, Raminder Rathore, and Udita Agrawal 2022
N. Sabharwal et al., Hands-On Guide to AgileOps, https://doi.org/10.1007/978-1-4842-7505-4_8

CHAPTER 8

Moving to Agile with
Infrastructure as Code
In this chapter, we will discuss how to get started on infrastructure as code. The topics

that will be covered in this chapter are as follows:

•	 Getting started with infrastructure as code using Scrum

•	 Estimating stories

•	 Defining acceptance criteria

•	 An infrastructure build example

•	 Tools pipeline

•	 Infrastructure as code example

•	 Integrating infrastructure as code (IaC) with development pipelines

•	 Extending the IaC example

•	 Key agile practices while adopting IaC using Scrum

The birth of infrastructure as code has been one of the transforming trends in the IT

industry in the past decade. The thought process behind this trend is that if applications can

be autodeployed, then why can’t infrastructure? Why is it that the servers have to be built and

configured manually? As more and more organizations move to the cloud, the expectation is

to speed up deliveries, and infrastructure as code plays a crucial role in this adoption.

Infrastructure as code (IaC) is the process of managing and provisioning
computers through machine-readable definition files, rather than physical
hardware configuration or interactive configuration tools.

—Definition from Wikipedia

https://doi.org/10.1007/978-1-4842-7505-4_8#DOI

178

The traditional operating model had to change, and this gave rise to many

configuration tools that helped organizations to adopt infrastructure as code. This

also paved the way for the IT operations team to upscale to new technologies like

Chef, Puppet, Ansible, Terraform, etc. Additionally, many cloud providers offer native

infrastructure as code tools (like AWS CFN, Google SDKs, Azure ARM templates, etc.).

There are also enterprise cloud lifecycle management tools such as DRYiCE MyCloud

that make the journey to infrastructure as code faster. This helps teams to adapt quickly

and move toward infrastructure automation through code.

It also helps IT operations to become agile and deliver flexible as well as reliable

services. Setting up a new infrastructure through code not only creates the infrastructure

for deploying applications, but also creates the supporting and mandatory components

such as networks, firewalls, storage, etc. A central repository is created that versions all

the code that is comprised of scripts, templates, and policies. These scripts are triggered

directly or are called through orchestration tools like Jenkins, TeamCity, etc., and are

version controlled using tools like Git, GitHub, etc. In fact, in some organizations,

these repositories are shared with development teams to write code for building new

infrastructure. This is an excellent medium that brings the development and operations

teams together. See Figure 8-1.

Figure 8-1.  Controlling and managing infrastructure with IaC

Chapter 8 Moving to Agile with Infrastructure as Code

179

Another faster approach to achieve this in the cloud world is to use cloud lifecycle

management tools, which integrate with the existing set of processes that are based

on ITIL as well as provide capabilities for infrastructure as code through easy-to-use

interfaces and out-of-the-box integration with multiple cloud providers and templates.

Tools like DRYiCE MyCloud help organizations achieve infrastructure as code with

minimal setup time and reduce the time to market. The MyCloud platform supports

VMware, SCVMM, AWS, Azure, and GCP environments and integrates with IT service

management, service catalog, monitoring, and management tools along with CI/CD

tools to provide integration between the development and operations teams.

Organizations that manage and control infrastructure through code can save

tremendous amount of efforts with automation and also avoid human errors.

Manipulating infrastructure directly through code also allows teams to keep track of

who made the changes, when these changes were made, and what components were

modified. As the infrastructure matures, the teams also implement policies to ensure

that there are no manual changes being done in the infrastructure. If a manual change is

being executed, the tool reverts those changes and alerts the administrators about this

change.

Figure 8-2.  HCL DRYiCE MyCloud, CLM tool

Chapter 8 Moving to Agile with Infrastructure as Code

180

�Getting Started with Infrastructure as Code Using
Scrum
The journey toward infrastructure as code starts by building a new team. The team is

typically called the automation or DevOps or IaC team. The role of this team is to use

infrastructure as code tools and to collaborate with development teams to build new

automation use cases. Scrum is an ideal agile methodology for teams that are into

building components. This DevOps/automation team defines stories in the backlog

that are discussed and prioritized by the team after discussions with the stakeholders.

They build infrastructure pipelines that are made available as a catalog service and

have the flexibility to be integrated with the development pipeline. The infrastructure

components are delivered in a modularized fashion. The team first creates epics that are

reviewed, prioritized, and budgeted, and these are later broken down to features/stories

that run in sprints. The teams practice Scrum ceremonies and also frequently deliver

a minimum viable product (MVP) toward the sprint end. This MVP is demonstrated at

the end of the sprint. Any issues in the MVP or enhancements are placed back into the

backlog. See Figure 8-3.

Table 8-1.  Benefits of IaC

Benefits with Infrastructure as Code

Quick time to market—servers deployed instantly

Foster collaboration—bridges gaps between teams

Standardize operating methodology—minimizing risk

Traceability—audit and track every component

Optimize cost—reduce operational expenditure

Chapter 8 Moving to Agile with Infrastructure as Code

181

To get started on this journey, the first step is to upskill the team on the new

methodology and make the team members comfortable with adopting Scrum. New

role definitions are created that are aligned to the agile process like Scrum master,

product owner, AgileOps Scrum team, etc. The product owner is responsible for defining

the requirements and is the interface between the business, customers, application

development teams, and the AgileOps Scrum team. The end goal for this team is to

standardize and automate the infrastructure in an agile manner. As the team gets ready

to work in Scrum mode, a platform is also identified wherein the epics and stories will

be created, updated, and tracked. It is important that the team learns to operate this tool

and are able to visualize the product journey.

Let’s take a quick look at the key terminologies in this structure; see Table 8-2.

Figure 8-3.  Planning IaC through Scrum

Chapter 8 Moving to Agile with Infrastructure as Code

182

A good practice while getting started with Scrum is to start with sprint 0, which acts

as a litmus test for the team. The team also gets to revisit the duration of the sprint as well

as the number of stories that they can deliver in a sprint. For example, the team decides

to have a sprint cycle for two weeks with seven members. They identify a few stories

and by the end of the sprint realize that two weeks for the sprint cycle is not sufficient.

They either need to reduce the number of stories in a sprint or increase the sprint cycle

to three weeks. After the completion of sprint 0, the successive sprints should stick to

these principles. It is important that the traceability between requirement types (epics,

features, stories) is defined. Teams need to agree on the different requirement types

that they would need. While some have four types, there are others who stick to just

three levels like epics, stories, and tasks, and that suffices their journey. Tools like Azure

DevOps, JIRA, etc., provide this capability to state these different requirement types and

also create custom types. In a portfolio model, themes are created at the portfolio level

that are then further broken down into epics, features, stories, and tasks that spread

across the program and team levels. See Figure 8-4.

Table 8-2.  Scrum Terminology

Scrum
Terminology

Description

Product
backlog

This comprises epics and stories for building infrastructure components. These

items are discussed with key stakeholders and then documented in this backlog.

Sprint backlog Before the start of every sprint, high-priority user stories are identified and

moved to the sprint backlog. The stories in this backlog are the ones that will be

implemented by the team.

Daily standup As the sprint progresses, each day the team meets for 15 to 20 minutes to discuss

their workload and risks that need attention.

Sprint cycle Every sprint has a duration; some teams run in sprints of two weeks, while a few

run a sprint for three weeks. But once this duration is decided on, teams should

not be allowed to change it. Since there is little empirical data on infrastructure

operations sprints, you need to tweak the sprint duration based on the projects

and team size and skills.

Sprint demo At the end of the sprint, the developed product or script is run by the key

stakeholders. Any defects or issues are noted and placed back in the backlog.

Chapter 8 Moving to Agile with Infrastructure as Code

183

Another success factor for sprint delivery is making the right estimations. It is the

team that collectively estimates the stories that are to be delivered, but leveraging

the right techniques makes a key difference. These estimations are done during the

sprint planning meeting. Each team member shares their view on the estimates, and a

collective decision is made. At the end of the sprint planning meeting, the team needs to

ensure that all the stories are reviewed and ready for implementation, and each story is

estimated and linked with an epic or parent entity. The Scrum master facilitates the team

by handholding them on the agile best practices in the initial phases. The Scrum master

and team check if everyone in the team has stories to be addressed and no member is

left behind. Emphasis is also made on ensuring there is enough capacity to complete the

stories and they do not spill onto the next sprint.

�Estimating Stories
Various methods are available that can be used to estimate stories. Some of the

commonly used techniques are T-shirt sizing (XS for extra small, S for small, M for

medium, L for large, XL for extra-large), numeric sizing (from 1 to 10), Fibonacci series

(1, 2, 3, 5, 8, ...), etc. To run these techniques, there are processes available that help

teams to get to the closest estimates possible. Methods like Planning Poker can help

teams to pick the right effort sizing in a collaborative manner (see Figure 8-5). This

method is based on the team’s mutual consensus. During the sprint planning session,

each team member reads a common story and shares their estimates using numbered

Figure 8-4.  Agile components

Chapter 8 Moving to Agile with Infrastructure as Code

184

cards. They then share their reasons on how and why they arrived at a particular

number. The Scrum master records the high and low estimated numbers for that story

(for all the members) and repeats the process again until the team mutually agrees at a

number for that story.

Another commonly used method, mostly leveraged by development teams, is the

functional point analysis (FPA) method wherein the functions are tagged with function

points based on their complexity, and it includes testing efforts as well. For example, an

application has four key functions that are to be either coded or tested like user interface,

business logic, database connections, and testing. Each of these functions has points

defined based on their complexity (as low, medium, high, and complex). See Figure 8-6.

For infrastructure-driven stories, T-shirt sizing is the recommended technique that

is easy to adopt and practice. Each T-shirt size depicts the complexity level. For example,

a small-sized story means it can be developed quickly and is simple. On the other hand,

M or L indicates that the story is more complex than the S-sized one and needs more

development time. These sizes are linked with the Fibonacci series shown in Table 8-3.

Figure 8-5.  Planning Poker, story estimation method

Figure 8-6.  Sample functional point analysis

Chapter 8 Moving to Agile with Infrastructure as Code

185

We have the XL and XXL T-shirt sizes, but they should be avoided because a sprint

size is two to three weeks and it will be difficult to complete these stories in one sprint.

Therefore, the XL and XXL user stories should be broken down into multiple S, M, or L

user stories.

Let’s assume this sample user story:

As an admin, I should be able to monitor the CPU utilization of the server
and generate alerts so that I can proactively rectify the problem.

To estimate this story, the following should be thought through:

•	 Understand the scope, what is needed.

•	 Clarify the end product, which is a script or a playbook.

•	 Create tasks for this story that need to be performed. This could

be getting access to some tool, server, etc., for monitoring its CPU

utilization.

•	 Provide estimates. If tools integration is in place, then only the script

needs to be developed and tested. Then the sizing can be S or M

based on how many OSs the script needs to cater to.

Table 8-3.  T-Shirt Sizes and Equivalent Story Points

Size Description Story Point

X-Small Deliverable in a very short timeframe and very simple. 1

Small Deliverable in a short timeframe and simple. 3

Medium Deliverable in the scope of a release and is less complex. 5

Large Potentially deliverable in the scope of a release and is complex. 8

X-Large Very big, but generally understood. Needs further breakdown over several

releases and is very complex.

13

XXL Very big and uncertain area. Needs further breakdown into something

manageable over various releases and is extremely complex.

21

Chapter 8 Moving to Agile with Infrastructure as Code

186

Note R emember that every story should be independent, simple, and testable.
Initially, teams may shy away from the estimation processes, but with the right
training and mentorship, the teams will learn the methodology and realize the
benefits. After all, this is needed for effective capacity planning.

�Defining Acceptance Criteria
Another important aspect of agile stories is to define the acceptance criteria. This

means that if a user story is to be moved ahead or is considered complete, then it has

to be thoroughly tested. This is made possible by defining acceptance criteria. This can

happen either at the epic level or at the story level. In tools like JIRA, you can define

fields that prompts the users/business analysts to mention this list of acceptance criteria.

If the result for all the listed criteria is true, then this means that the story can move

ahead. Testing should include functional as well as nonfunctional areas. The golden rule

is that each story should be linked with at least one acceptance criteria. Each criterion

is written in the format “given-when-then” that mentions the scenario and the expected

result. It is good practice to build acceptance criteria with user stories as they are built.

Table 8-4 shows a sample user story.

Table 8-4.  Sample User Story

Story Acceptance Criteria

As a: System

administrator

I want to: Integrate

tool 1 with tool 2

through a REST API

module

So that: Alert

notifications are

visible and efficiently

managed.

Best Case:
Given: Tool 1 is integrated with Tool 2.

When: A REST API is used.

Then: Notifications are visible to the system administrator.

Worst Case:
Given: Integrations for Tool 1 and Tool 2 are not active.

When: A REST API is deactivated/not working.

Then: The system administrator is updated about the disintegration.

Nonfunctional Case:
Given: Tool 1 and tool 2 are integrated.

When: A REST API is used.

Then: Notifications should be pushed every one minute.

Chapter 8 Moving to Agile with Infrastructure as Code

187

�An Infrastructure Build Example
Let’s look at an example of an epic that states the need for provisioning basic

infrastructure like RHEL Linux using infrastructure as code. This epic is a big

requirement that is broken down into stories, and each story is well thought through and

estimated.

There are various methods available to write effective stories; Figure 8-7 shows the

most common one.

The idea is to state the user persona who needs to run an activity for a specific

purpose. It is important that teams understand that while agile states “working software

over comprehensive documentation,” there has to be some minimum documentation

to support the implementation. A clear explanation of a need effectively helps to track

changes in the future. This is an area where the InfraOps teams needs coaching. They

may find that such documentation can be time-consuming. A coach can help to train

these teams and also enable them to implement the technique in the right way. For

example, an epic (high-level requirement) has been created called “Provision basic

infra.” Underneath this epic, the team creates the associated user stories. Each story is an

independent functionality against which the team will build an automation. The team

also spends time to estimate each story and ensure that it is well tested and deployed on

time.

Figure 8-7.  User story format

Figure 8-8.  Examples of IaC epic and related stories

Chapter 8 Moving to Agile with Infrastructure as Code

188

As teams evolve and get used to the Scrum methodology, they also learn to estimate

the stories effectively and become more proficient. Having an agile practitioner or a

coach accelerates the adoption of agile method and practices. This coach works with

agile leads and the team and guides them on how to write effective stories, perform

estimations, track team progress through dashboards, and enable teams to identify

opportunities for improvement and automation.

�Tools Pipeline
Another important element of change is that the lifecycle of building an infrastructure

component whether it is a VM or a firewall or installing a security agent should

practice CI/CD like how it is practiced in the application world. This means that like

an application pipeline, an infrastructure pipeline should be built. Hence, every time

new code is written or modified, the infrastructure pipeline gets triggered and runs

through automated build process, unit testing, code coverage, and checks for security

vulnerabilities. CI/CD automation is possible with the help of automated tools that are

linked to an orchestrator like Jenkins that runs the entire pipeline from end to end. So,

while teams get upskilled on methodology, they also need to upskill on tools that are

required to build an infrastructure pipeline.

The tools in Table 8-5 are commonly used across the product lifecycle. The

product being referred here is the collection of infrastructure as code scripts for a

particular domain. Many organizations have a well-defined archetype toolkit that is

standardized in the organization. Of course, there will be reference tools as well for

legacy infrastructure. Deciding on the right tools at the beginning is a crucial step toward

successful implementation. Some of the tools may be new to the team, and hence they

should be upskilled on the new tools and technologies so that during sprint execution,

they do not face issues. As more and more stories are delivered, the team steps forward

to integrate their pipeline with the service catalog.

Chapter 8 Moving to Agile with Infrastructure as Code

189

�Infrastructure as Code Example
Let’s look at a scenario where an engineer needs to commission a new VM. They

access the ITSM tool like ServiceNow and look for the catalog items that allow them

to submit a requisition for provisioning a VM. As soon as the request is approved, the

related infrastructure pipeline is autotriggered and sets up the VM without needing

any manual intervention. Earlier such requests took two to three weeks of time, but

now they just take an hour. Many organizations have realized such benefits and aim to

first standardize and automate the basic infrastructure needs that do not need manual

inputs. The workflow in Figure 8-4 shows how users are empowered to commission

and decommission VMs through the ITSM tool. Once their requests are approved by

the approvers, the request is directed to orchestration tools like Jenkins that trigger the

respective job. The job further calls out the scripts from the repository for execution.

The status after completion is updated in the ITSM tool, thus notifying the user

Table 8-5.  Pipeline Phases and Commonly Used Tools

Area Commonly Used Tools

Planning JIRA/Snow

Version Control Git/GitHub

Development IDEs/SDKs

Build Ant/Maven

Artifactory Jfrog

Test SonarQube/Selenium/Wireshark

Orchestration Jenkins

Infra Build Terraform, DRYiCE MyCloud

Deploy Terraform/Ansible, HCL Launch

Monitor Solarwinds/Nagios/Zabbix

Security HCL AppScan

Dashboarding Grafana/APIs

Documentation SharePoint/Confluence

Chapter 8 Moving to Agile with Infrastructure as Code

190

who submitted the ticket. The support team is notified of any issue in the workflow

immediately. Similar use cases are identified and implemented in ITSM to facilitate a

culture of self-service.

There are multiple tools like Jenkins, TravisCI, etc., available that enable such

orchestration and serve as an integration bridge between ITSM and other tools. These

tools trigger automation by calling respective jobs that complete an action. This action

can be performed by one or more tools. For example, say we have a use case to build

an Amazon Machine Image (AMI). This is possible by first spinning up a new virtual

machine on AWS, installing the required software, and then building a half-baked AMI,

which then becomes a reusable template.

We will design the pipeline that leverages the cloud-native tools to automate a series

of jobs as described in Table 8-6.

Figure 8-10 describes the integration points between these interfaces. The IaC

scripts are versioned in AWS CodeCommit, and Jenkins is configured to trigger the

orchestration whenever new changes are updated in AWS CodeCommit.

Figure 8-9.  Self-servicing with IaC

Table 8-6.  Pipeline Creation Using Cloud-Native Tools

Tool Name Purpose

AWS CodeCommit Another AWS service that hosts secure Git-based repositories.

Jenkins An open source tool that is used to design and implement pipelines (building

CI and CD).

AWS Cloud
Formation

An AWS service that helps to design templates that are easy to manage and

are repeatable. It helps implement infrastructure as code.

Chapter 8 Moving to Agile with Infrastructure as Code

191

Here are the details for this simple IaC pipeline:

	 1.	 Jenkins will check out scripts from CodeCommit for any new

changes that are seen in the repository. A repository is a container

that holds source code that can contain scripts, configuration

artifacts, etc., and also IAM permissions to control access to Git

repositories.

	 2.	 Jenkins is configured to trigger a pipeline on a new change in the

Git repository. Similar to the way it calls scripts, Jenkins can easily

be configured to call other tools.

	 3.	 AWS CFN scripts execute and provision AWS instances using

hardened AMI. In the place of CFN scripts, there could be other

scripts like Ansible playbooks or Terraform scripts or DRYiCE

MyCloud templates that will spin up instances.

	 4.	 Once the instance is commissioned, the scripts will further install

the software that has been requested, like software, configuration

files, or platforms and databases, as needed.

	 5.	 The scripts will finally generate an AMI (which is configured), and

then the instance is decommissioned, which was provisioned for

the creation of the AMI.

Similar use cases are designed that get associated with multiple infrastructure as

code pipelines. Each pipeline helps teams to speed up the delivery time and bring

down the wait time for application development and testing teams. As pipelines get

implemented, the next step for the teams is to integrate the infrastructure pipeline with

the application pipeline. The idea is to foster the culture of DevOps wherein both teams

understand the product and the underlying infrastructure needs. The IaC repository

is also made accessible to development teams to implement more use cases on

Figure 8-10.  IaC example on AWS

Chapter 8 Moving to Agile with Infrastructure as Code

192

infrastructure. With this approach the development teams can use APIs provided by the

infrastructure as code tools and call those APIs as part of their development pipeline to

spin up the infrastructure on demand.

�Integrating IaC with Development Pipelines
As IaC matures in the organization, the next step is to integrate and extend the IaC

pipelines with other teams. An excellent example for integrating app and infrastructure

pipelines is the need for blue-green deployments (see Figure 8-11). This is a best practice

that implements the principle of CD, which is possible when the entire end-to-end

lifecycle is automated through the pipelines. A blue-green deployment is implemented

for every new deployment that has to happen in a production-like environment. So, a

new environment is set up, and the new application version is deployed on it. Once it

is validated, the existing infrastructure is removed, and the traffic is routed to this new

infrastructure.

As new environments replace older environments, this helps to avoid any

configuration issues or compatibility issues that normally arise when deploying artifacts

on the same environment. All this is made possible with the help of automated tools

that are integrated in the pipeline. As a developer checks in code, the CI pipeline verifies

the integrity of the code and performs unit tests. All this work is being managed on the

developer branch that is detailed either from a feature branch or from the master branch.

Figure 8-11.  Blue-green deployments

Chapter 8 Moving to Agile with Infrastructure as Code

193

Once the code is integrated and tested, it is moved to the development environment

where further tests are executed, and the code quality is checked. On success of CI,

we move to CD that further enables the movement of binaries from one environment

to another. While moving binaries to an environment that must be built on-demand,

the IaC pipeline is called. Once the IaC pipeline spins up the required infrastructure, it

then deploys the application code on this new infrastructure and notifies stakeholders.

Unsuccessful deployments are rolled back, and respective teams are notified to make

appropriate changes to rerun the pipeline. See Figure 8-12.

On the other hand, successful deployments enable monitoring agents that

continuously monitor the applications and infrastructure. This cycle is repeated “n”

number of times, and every time it is executed, teams get to learn the gaps and improvise.

�Extending the IaC Example
Once the IaC pipelines are ready, they can be extended to other teams like the

development teams. First, let’s look at a basic application pipeline that integrates and

tests any new piece of code that gets checked into the source code repository. Later we

will deep dive into how to extend an IaC pipeline with application pipeline that leverages

the following set of tools:

•	 AWS CodeCommit: Source code versioning

•	 Jenkins: Orchestrating the pipeline

Figure 8-12.  Connecting app and infrastructure workflows

Chapter 8 Moving to Agile with Infrastructure as Code

194

•	 ASOC/SonarQube: Static code analysis

•	 JUnit/NUnit: Unit testing for Java and .NET source code

•	 Maven: Building application source code

•	 JFrog Artifactory: Binary repository

The application pipeline aims to continuously integrate new code thereby practicing

the principle of continuous integration. Stories are created and estimated for each step

as stated here:

	 1.	 The latest source code is checked out from the AWS CodeCommit

repository.

	 2.	 Jenkins triggers the pipeline and orchestrates the CI workflow.

	 3.	 SonarQube analyzes the source code for code complexity, code

coverage, etc. This is the first step toward quality inspection,

which is also known as static application security testing (SAST). It

is a key practice encouraging shift-left testing. It helps to analyze

code defects quite early in the lifecycle. Tools like HCL ASoC,

Fortify, Parasoft JTest, etc., are other well-known tools used in this

space.

	 4.	 Junit and Nunit test frameworks run unit test cases on the

checked-out code to scan for coverage and functionality checks.

This is another step toward proactive testing.

	 5.	 Apache Maven builds the source code that generates binaries.

These binaries are pushed to tools like JFrog Artifactory, which are

then pulled when the CD pipeline gets triggered. See Figure 8-13.

Figure 8-13.  AWS CI pipeline example

Chapter 8 Moving to Agile with Infrastructure as Code

195

The outcome of the previous application pipeline is the artifacts that comprise

the latest binaries. These binaries are then deployed to test environments for running

functional and performance tests. Gone are those days when test environments had to

be blocked for testing. Nowadays, these environments are provisioned on demand using

IaC pipelines. The IaC pipeline provisions and configures the new infrastructure, fetches

the latest binaries from JFrog Artifactory, and deploys the code. This environment now

calls for functional/performance test scripts through tools such as Selenium, Fortify, etc.

As pipelines get created and integrated, they can also get integrated with ITSM tools for

catalog-based service requests.

Figure 8-13 describes how Jenkins triggers the application pipeline first and deploys

the binaries. This completes the CI aspect. Once the binaries are ready for deployment,

the infrastructure components are provisioned and configured. In this example, it is the

AWS AMI that is provisioned. Once the environment is ready, the artifacts are deployed,

and this initiates the CD aspect. On this new test instance, the application is tested for

regression and functional testing using tools like Selenium. Once the testing is done,

the results are published. After this step, the provisioned environment for testing can be

decommissioned. This simple scenario had different steps, and each one is managed

through a script that is triggered through Jenkins. Implementing such a scenario needs a

well-defined plan that identifies the key use cases that should be automated and added

in the pipeline. As discussed earlier, these pipelines can be triggered through ITSM tools

as well.

Figure 8-14.  Integrating infrastructure and app pipelines

Chapter 8 Moving to Agile with Infrastructure as Code

196

�Key Agile Practices While Adopting IaC Using Scrum
Here are the key practices:

•	 Define high-level epics. The previous example can be stated as an

epic. This is a large requirement that will have multiple stories.

•	 Create stories that are linked to the epics and that have an assignee

who will work on the stories as per the defined timelines.

•	 Issues or risks while building the pipeline should be called out in the

daily meetings with the team.

•	 While planning for the sprint, define clear expectations and

deliverables with the team.

•	 Do not aim to deliver a complete pipeline in one sprint; instead,

define it across sprints and deliver it continuously as an MVP.

•	 Each story needs to have a well-defined description and acceptance

criteria.

•	 The team’s capacity should be made visible before the sprint starts.

•	 Encourage team members to lead daily calls and get accountable on

their stories.

•	 Stories can have tasks and avoid subtasks since these become

difficult to manage over a period.

•	 Practice story estimation in every sprint planning meeting.

�Summary
The infrastructure as code way of managing infrastructure is replacing the traditional

processes in which infrastructure was provisioned, decommissioned, patched, and

upgraded. Once the infrastructure teams are trained on the agile concepts and tools,

they can start creating a backlog of stories that are prioritized and executed. There are

dozens of tools available that the teams can adopt to implement infrastructure as code

such as Terraform, Azure Resource Manager (ARM), Puppet, Chef, HCL MyCloud, and

other cloud-native tools. The new model brings engineering aspects to infrastructure

Chapter 8 Moving to Agile with Infrastructure as Code

197

operations and leverages agile ways of development. The IaC pipeline functions in the

same way as the development pipeline where it integrates with multiple tools such as

versioning, static code analysis, security analysis, unit testing, build and deployment,

testing, etc. To rapidly adopt infrastructure as code and move to agile development,

organizations need to focus on the following key areas:

•	 A clear roadmap with a vision toward IaC adoption

•	 Identification of tools for source control, testing, deployment,

extensions, etc.

•	 Upscaling teams on understanding the concepts and tools for IaC

•	 Identification of use cases to be implemented and integrated

•	 Timelines on when and how the enterprise will offer self-servicing

Chapter 8 Moving to Agile with Infrastructure as Code

199
© Navin Sabharwal, Raminder Rathore, and Udita Agrawal 2022
N. Sabharwal et al., Hands-On Guide to AgileOps, https://doi.org/10.1007/978-1-4842-7505-4_9

CHAPTER 9

Success Path
This chapter presents a case study on AgileOps. The topics that will be covered in this

chapter are as follows:

•	 Case study implementing AgileOps

•	 New operating model for our enterprise Alpha

•	 Outcomes

In the previous chapter, we looked at the different agile methodologies, frameworks,

and implementation approaches to plan and execute the agile journey in the

infrastructure operations area. There is no one perfect method that is applicable for

all organizations. The decision of which method to choose is tricky and sometimes

confusing too. Every framework is supported by agile principles, and there are no strict

mandates that must be followed. IT organizations that are keen to transition to agile

ways of working know their organization well and thus can decide on which method/

framework will benefit them the most. There have been many organizations across

multiple industries that have seen success with one method in the initial iterations,

while there are other industries that could not succeed with the “as-is” methods but

still achieved success by customizing the methods to suit their needs. While application

teams adopt agile culture, transitioning the infrastructure operations team is a challenge.

Big enterprises plan their transformation roadmap for two to three years with people and

automation as their key foundational pillars. While teams get trained on new skills and

ceremonies, they also identify new opportunities for automation, and new teams and

roles are formed.

https://doi.org/10.1007/978-1-4842-7505-4_9#DOI

200

�Case Study Implementing AgileOps
We have done a deep dive into the processes and best practices and saw practical

step-by-step examples of how these are to be used in an infrastructure as code

scenario. We will now go through a detailed case study of how the team structures

can be created based on what we have learned so far. Our imaginary company

Alpha is globally distributed, and the executive board has decided to sponsor the

transformation of their infrastructure operations team. The current infrastructure

operations team has multiple teams that manage on-premises hardware, network,

monitoring, storage, and backup and recently has started supporting cloud

operations on AWS and Azure. See Figure 9-1.

Alpha has also decided that it will not go “big bang” and will initiate the movement

to agile with the monitoring team first. The current monitoring team manages and

supports multiple tools to monitor thousands of servers and applications. There are

predefined thresholds embedded in these tools that actively alert the infrastructure

engineer through emails. This engineer manually checks the alert, resolves the

underlying issue, and updates the knowledge database (KEDB). The key expectation

of transitioning this team first is to modernize the way alerts are addressed. Also,

applications are moving to cloud. Alpha creates a roadmap with a clear vision to adopt

Figure 9-1.  Traditional model for infra IT Ops

Chapter 9 Success Path

201

AI-driven operations in two years. Funds are being planned and approved for this new

organization change as well as for investing in new tools and upskilling teams on new

technologies.

A centralized and dedicated team called AIOps is formed for implementing,

tracking, and executing this new transformation roadmap. The members of this team are

consultants and practitioners who write out the details and define the new structure to

be rolled out. They assess the current monitoring team on the following key factors:

•	 Agile competency on Scrum/Kanban

•	 Expertise on new technology

•	 Current operations workload

•	 Current project workload

•	 Team performance with metrics like cycle time

•	 Automation scenarios implemented in the past

While the prerequisites are assessed and baselined, the team decides to restructure

the team as shown in Table 9-1.

The team will also create a workflow that defines how monitoring alerts will respond

post-transformation. Every monitoring alert will be tracked through the ITSM tool. These

alerts will be created by AIOps or by end users or business users. A clear vision for AIOps

is also set up that will transform the way alerts will be responded in the new ecosystem.

Table 9-1.  Comparison of Traditiona IT Ops and Agile IT Ops

Team Name Agile
Method

Remarks

BAU-Generic ops Kanban Transition traditional operational support for monitoring to agile

ways. Team members “pull” work and get more accountable.

CTB-Infrastructure
ops

Scrum A new team is created from the BAU that creates IaC pipelines

for the prioritized use cases on automation.

AIOps team Scrum Another new team is formed, through a combination of

reskilling and hiring, that works on AIOps. This team runs the

sprints for deploying AIOps in the environment.

Chapter 9 Success Path

202

AIOps will be helpful only when it is able to autoresolve the monitoring issues when

integrated with intelligent runbook automation tools. The management at Alpha has

evaluated tools with event correlation capabilities and has funded its implementation

that will be rolled out in phases.

Note that there are numerous tools available like Moogsoft, Splunk, Zenoss, and

automated remediation tools like DRYiCE iAutomate that are enabling organizations to

speed up the incident resolution processes and also serve as the right tools for the SREs.

See Figure 9-2.

Figure 9-2.  New working model for Infra IT Ops

Chapter 9 Success Path

203

�New Operating Model for Alpha
Here is the new operating model:

•	 CTB-IaC team: This is the automation team. New requirements

related to infra setups will be managed through IaC pipelines. This

team will work in Scrum mode and will deliver pipelines based on

the requirements that are prioritized and approved. This team will

build reusable templates that are version controlled and orchestrated

through the ITSM tool. They will also pay attention to various

important infrastructure components such as network, firewall,

RBAC implementation, etc., while building the pipelines.

•	 AIOps team: This is a team that will configure the new solution to

monitor and autoresolve commonly faced issues. They will identify

the use cases and feed data into the solution. The AIOps systems will

leverage analytics and machine learning features to make the right

decision; for example, it will autoresolve the issue and update the

ITSM tool. All identified use cases will be discussed and configured

in the system with help from the BAU-GenericOps team. Every use

case that will be managed by the AIOps solution will be targeted to

reduce ticket volume and ensure an increase in system availability.

This team will start the project in Scrum mode to deliver the core

features and functionality and then move to Kanban when the project

moves to the operations phase, while still continuing to run sprints

for enhancements and updates.

•	 BAU-GenericOps: This is the traditional infra operations team that

will get transitioned into an agile operations team by practicing

Kanban to resolve interruptions and other day-to-day operation

activities. Alerts or tickets that are not being resolved by the AIOps

solution will be pulled for quick resolution by this team. This team

will continue to track the issues and resolutions and also update

their knowledge database (KEDB). They will also collaborate with the

other two teams to automate use cases in the AIOps solution as much

as possible.

Chapter 9 Success Path

204

�Outcomes
The end goal is to optimize and automate whatever is possible in the monitoring

space. The inception will have the three teams, but moving forward as AIOps becomes

matured, the other BAU-GenericOps team should become lean. Alpha will accrue

multiple benefits by implementing such a model.

•	 Collaboration: Highly connected engineering teams that are cross-

skilled and work closely with product teams with one common vision

to deliver and support a quality system to end customers.

•	 Resiliency: The ability to design, build, and deploy systems that are

well tested and compliant.

•	 Self-service: Empowered product teams to scale systems as needed in

their delivery pipeline.

•	 Shift-left security: The ability to embed security policies in the system

at every stage.

•	 Continuous improvement: The ability to learn and scale with every

iteration. Automate as much as possible with AIOps to provide the

required tools and technologies to agile and SRE teams to realize

their goals of reducing toil quickly and increasing availability.

�Summary
Every organization has unique requirements, ways of working, current structures, and

business goals. Various ways in which infrastructure teams can be organized using agile

infrastructure operations were covered in this chapter. This can serve as guidance while

designing the organization structures and processes. The transformation needs to be

phased and planned based on the organizational needs and constraints. Teams should

be ready to test and fail and then improve. Every model emphasizes agile and DevOps

practices such as CI/CD, infrastructure as code, site reliability engineering, Scrum,

Kanban, etc. At the end of the day, what matters is that the transformation should create

and nourish a culture of trust and visibility. New tools and technologies do empower

teams, but if they are not used effectively, then the vision to be agile will fade.

Chapter 9 Success Path

205
© Navin Sabharwal, Raminder Rathore, and Udita Agrawal 2022
N. Sabharwal et al., Hands-On Guide to AgileOps, https://doi.org/10.1007/978-1-4842-7505-4_10

CHAPTER 10

Learnings and Ways
Forward
In this chapter, we will be discussing what the next steps are for an enterprise. The topics

that will be covered in this chapter are as follows:

•	 Our learnings

•	 Emerging trends to focus on

•	 Next steps

•	 Conclusion

With the growth in areas like the cloud, microservices-based architecture, site

reliability engineering, and so on, organizations are rethinking how they should operate.

They have learned that agility with resiliency and automation is the need of the hour.

While many have already started their transition to this new norm, there are teams that

need to switch to the new working style quickly before it is too late. So, this chapter

covers what we have learned and how to move forward.

�Our Learnings
Here is what we have learned:

•	 Set up a small team to automate infrastructure; this is the team that

adopts infrastructure as code principles and tools. This team can

reside with the infra hierarchy or sit between the apps and ops teams.

Some organizations call these teams the DevOps team.

https://doi.org/10.1007/978-1-4842-7505-4_10#DOI

206

•	 Create a central repository of reusable artifacts and templates that

can be used by developers as well. This way you are empowering

application teams to set up environments on their own. If you want

to speed operations up, invest in cloud lifecycle management and

AIOps tools like Moogsoft, Zenoss, DRYiCE iAutomate, and DRYiCE

MyCloud.

•	 Identify and prioritize use cases that can be automated, such as

looking at ways to integrate the infra pipeline with the application

pipelines.

•	 Baseline where you are today and track the improvements regularly.

This becomes a good case for other teams to refer to and adopt.

•	 If you are on the digital path, then plan for adopting AIOps.

Automation is a key lever to driver agility.

•	 Embed security principles across the pipeline to avoid vulnerabilities

and ensure that work is delivered as per the defined compliance

rules.

•	 If the need arises, revisit the team structure and define new roles to

boost team morale. Also introduce trainings to team members on

new technologies.

�Emerging Trends to Focus
Technology can speed up the deployment of capabilities, but ultimately it is people who

need to use these technologies to their potential and realize the benefits. Thus, people

and cultural change are the keys to attaining maturity in agile infrastructure operations.

New roles are being introduced to encourage teams to adopt this new cultural change

wherein teams work toward a common vision, leverage common tools and platforms,

and are upskilled to new technologies like the cloud, infrastructure as code, AIOps, and

of course methodologies like agile. Standardizing infrastructure setups, rationalizing

tools, identifying opportunities to automate, and removing waste are all key drivers

toward running an AgileOps team. With all these new trends, if teams are not ready for

the changes, roadmaps will slow down. Hence, it’s important that teams are upskilled on

new technologies and processes and investments are thought through.

Chapter 10 Learnings and Ways Forward

207

Just implementing an agile tool will not suffice. Understanding the needs

and practicing the concepts are important. Additionally, the success lies in team

collaboration and continuously improving as teams scale up on their path toward agility.

The transition from traditional to agile gets successful with the guidance of an agile

coach or a practitioner who creates a roadmap with milestones, guides the teams to

move away from time-consuming processes, adopts new modern platforms, measures

and tracks metrics, and mentors teams on the new methods and practices. The coach

partners with teams to define the new strategy that is rolled in phases and continuously

monitors the progress for realigning the plan as need be. However, since applying agile

to infrastructure operations is niche and emerging, this book aims to provide guidance

from real-world implementations that can be leveraged for fast-tracking the journey

toward agile infrastructure operations. New guidance and data will be constantly made

available and updated at the companion site http://agileinfraops.com so that the

readers can further enhance their knowledge on this subject on a continuous basis. We

would love to hear from our readers with their comments, feedback, and success stories

of deploying agile for cloud, infrastructure, and application operations at feedback@

agileinfraops.com.

Organizations are also looking at how they can bring agility to their legacy

infrastructure that carries legacy applications. New customer demands have paved the

way to revisit how applications are developed and interact with other components or

applications. Some organizations have plans to modernize legacy applications and move

them to the cloud using cloud-native and container technologies. Containerization has

helped many organizations to deploy applications anytime and anywhere without facing

issues around configuration, connectivity, compatibility, etc. Supporting this technology

demands smart tools that empower application teams to build and deploy applications.

Tools like Docker, Kubernetes, etc., are being piloted and adopted by teams for better

management of resources and applications.

Teams can accrue maximum benefits by implementing the right technology and

practicing agile in iterations. The current era is all about unlearning and learning

new skills and continuously evolving. Teams can move toward this goal only if they

Figure 10-1.  Some key IT trends

Chapter 10 Learnings and Ways Forward

http://agileinfraops.com
feedback@agileinfraops.com
feedback@agileinfraops.com

208

are equipped with the right ecosystem that focuses on removing barriers between

teams. Whether it is Scrum or Kanban, until teams understand the importance of the

methodology, they will not be able to progress. If an organization is getting started with

IaC, then Scrum is an ideal fit. On the other hand, if traditional ops is to be transformed,

then Kanban is an ideal fit. This decision can easily be made with the help of a coach

who can assess the team structure and current working model and make relevant

recommendations. Such recommendations are prioritized and mapped with milestones

that have defined timelines.

We also accept the fact that the infra ops cannot work in silos with their rigid

processes anymore. They have to collaborate with dev teams, QA teams, and security

teams to ensure that product deliveries are well integrated and that they can quickly

reach out to the end customers. And this is achieved by finding use cases that bridge

the gap between these teams. Educating the teams on using modern platforms that

provide flexibility and end-to-end visibility makes sure that in the long run these teams

become cohesive in nature. Modern technologies like the cloud, serverless computing,

edge computing, software-defined infrastructure, and AIOps are all encouraging

organizations to switch to agile working models that will deliver faster results. So, the

need for moving the infrastructure toward modernization and digitalization is because

the applications are also getting upgraded or modernized. Both the development and

operational worlds need to connect and collaborate to deliver efficient results. This is

possible when they stop resisting changes and deploy these changes faster. An agile

mindset acts as a booster in this direction. Mentoring the teams on the benefits of agile

and helping them to become agile is essential for continued growth. And yes, incentives

and funding are crucial to ignite this journey. A well-planned enterprise strategy is

needed that addresses security, compliance, regulations, risks, and resiliency with the

base foundation set on agility.

�Next Steps
Agile has been evolving since 2001, and today it has become a must for every IT

organization that needs to survive. Some call it a project management approach, and

others call it a way of working. The rest are associating this as just a “process change

that leads toward lean.” In any case, the term agile organizations is trending, and it

means an organization where applications, operations, and other connected teams

work in an agile mode. These institutions design, develop, and operate products five

Chapter 10 Learnings and Ways Forward

209

times faster. Various agile methods have also been modified, and hybrid versions

applicable to different scenarios are available for use. Collaborating, staying relevant,

swiftly overcoming unexpected changes, and moving from “doing agile” to “being agile”

are all on an evolving journey that organizations cannot ignore. As this journey moves

ahead, value-based decisions will be important. Companies need to deliver value to

their customers instead of just focusing on quantity. They need to stay close to their

customers to get their feedback and improvise continuously.

Talking about an infrastructure operations team, the value that they can deliver is

the way they operate and set up environments, the mode of communication, and above

all “doing agile.” This will be achieved through optimized processes that deliver what is

needed. There must be trust and transparency between teams and a single pane of truth

for everyone, a standard set of tools and automation to leverage, and a well-defined

framework to reuse and improvise. Self-managed teams will emerge that will continue

to drive success factors. As companies reinvent themselves, teams will become more

manageable. In fact, some call it a flat structure when power and accountability are

distributed.

Collaboration with Security will no longer be in silos; and methods and tools will

be introduced that automate security checks at every stage of the development and

operations pipelines. For example, IaC teams will continue to introduce security checks

in their pipeline to check on various aspects such as compliance scores, vulnerability

issues, policy compliance, etc., and proceed only if successful. Technical debt will

be monitored to capture the improvement. Repetitive actions will continue to be

automated, thus leading to lean and AI-led operations.

�Conclusion
If you have not started on your agile journey, then it is not too late. You should identify

your needs, select the right agile framework, and evolve. Combining the best of

agile, DevOps, SRE, lean, and DevOps will help you to foster collaboration, improve

productivity, and mature toward “being agile.”

Above all, you need a plan with a clear vision that progresses you toward success.

The need for agile is no longer optional; it is the new way to operate, and it is high time

that your teams adopt this approach and build an ecosystem for self-managed teams

that are accountable, cross-skilled, and ready for new challenges!

Chapter 10 Learnings and Ways Forward

211
© Navin Sabharwal, Raminder Rathore, and Udita Agrawal 2022
N. Sabharwal et al., Hands-On Guide to AgileOps, https://doi.org/10.1007/978-1-4842-7505-4

Index

A
A/B testing, 64, 65
Agile methodology, 1

bottom-up approach, 2
data/leveraging technology, 1
development/operations, 7
DevOps, 7
history, 4, 5
infrastructure/cloud operations, 3
infrastructure operations, 5, 8
internal/external customers, 1
Manifesto, 9, 10
product lifecycle, 5–7
requirements, 2

AgileOps implementation
comparison, 201, 202
key factors, 201
knowledge database (KEDB)., 200
outcomes, 204
traditional model, 200
working model, 202

AIOps systems, 203
Alpha operating model, 203

B
BAU-GenericOps, 203
Behavior-driven development (BDD)

testing, 58
Black-box testing, 61, 62
Blue-green deployment strategy, 54

C
Canary deployments, 55, 56
Chaos engineering/testing, 64
Cloud computing, 45–51
Confidence/build verification testing, 60
Continuous integration/delivery

(CI/CD), 53

D, E, F, G, H
Deployment patterns/automation

blue-green deployment, 54
canary deployment, 55, 56
continuous delivery vs. deployment, 53
rolling updates deployment, 54, 55

DevOps
adopting process, 30
benefits, 34, 35
collaboration/productivity, 35
continuous journey, 36
delivery, 38
environment, 38
framework/product lifecycle, 37–39
integration, 38
monitoring/feedback, 39
principles

collaboration, 32
continuous feedback, 34
customer satisfaction, 30
deliver frequently, 31
deliver working software, 32

https://doi.org/10.1007/978-1-4842-7505-4#DOI

212

IT/technology, 32
reflect/adjust, 33
self-organization teams, 33
simplicity, 33
sustainable development, 33
trust/support, 34
welcome change, 31

scaling agile, 35
siloed teams/leverage automation, 36
testing, 39

Disciplined Agile Delivery (DAD), 139–143

I, J
Improvement process, 25
Incremental deployment, see Canary

deployments
Information technology infrastructure

library (ITIL), 13
Information technology infrastructure

library (ITSM)
change management process, 21
continual services, 24–26
designing services

availability management, 18
capacity management, 18
catalog management, 18
continuity management, 19
design coordination, 19
processes, 16
risk framework, 19
service level management, 17

event management, 22
incident management, 22, 23
InfraOps teams, 13
IT4IT

detect to correct (D2C), 116

IT4IT versus ITIL, 119
reference architecture, 115, 118
request to fulfill (R2F), 116
requirement to deploy (R2D), 116
strategy to portfolio (S2), 116
value streams, 115, 117
working process, 118

operation, 22–24
principles, 114
problem management lifecycle, 24
processes, 12
processes/product/partners/

people, 14
rapid digitization/emerging needs, 113
reality check, 13
requests for change (RFCs), 114
roles, 14
sequential manner, 114
strategies, 15, 16
time-boxed schedule, 114
traditional approach, 12
transition, 20–22
working software, 114

Infrastructure as a service (IaaS), 46, 47
Infrastructure as code (IaC), 152, 177

acceptance criteria, 186, 187
app and infrastructure workflows, 193
application pipeline, 194
AWS CodeCommit, 190
benefits, 180
blue-green deployments, 192
cloud-native tools, 190
components, 183
controlling/managing

infrastructure, 178
definition, 177
details, 191
development pipelines, 192, 193

DevOps (cont.)

INDEX

213

epic/related stories, 187
extending tools, 193–195
functional point analysis (FPA)

method, 184
HCL DRYiCE MyCloud, 179
infrastructure, 187, 188
infrastructure and app

pipelines, 195
key practices (Scrum), 196
multiple tools, 190
pipeline phases, 188, 189
planning poker, 184
Scrum terminology, 180–183
self-service, 190
story estimation method, 183–186
T-Shirt Sizes/equivalent story

points, 185
user story format, 187

Infrastructure operations, 157
agile methods, 161
Agile models, 160
AgileOps, 158
benefits, 157
big-bang implementation, 166
dashboards, 166
extended integration, 163
framework, 159
frameworks/methods, 157
initial time period, 167
intervals, 160
IT operations, 161
management techniques, 160
metrics tracking, 165–167
project management tools, 162, 163
pulling/pushing work, 164
pulling work/pushing work, 159
roles and responsibilities, 164
self-assessments, 158

self-servicing, 166
squads, 161
throughput/velocity, 165
traditional operations (see Traditional

infrastructure operations)
transformation plan

continuous assessments, 172, 173
continuous improvements, 172
expand/optimize, 170, 171
initializing phase, 173
maturity assessment, 174
milestones, 168
phases, 167
pilot/accelerate, 168–170
self-service, 172
standardization/optimization, 172
sustainment, 171–174
zero-touch deployments, 172

upgrading teams, 163, 164
working definition, 158, 159

K
Kanban

activities categorization, 93
boards, 88, 89
ceremonies, 88
identify workflow states early, 103
implementation, 85
infrastructure operations, 161
JIRA project

board status, 102
configuration, 98, 101
creation, 91
horizontal swim lanes, 101
naming option, 92
project template, 90
viewing option (WIP limits), 99, 100

INDEX

214

WIP limits, 98, 99
workflow, 91

key aspects, 85
lead vs. cycle time, 90
lifecycle model, 85, 86
meaning, 84
metrics, 89, 90
operational activities, 84
roles, 86, 87
specifications, 90
value-added (VA)/non-value-added

(NVA) activity, 93–99
workflow states, 103, 104
work-in-progress (WIP), 88, 92,

93, 96–98
key performance indicator (KPI), 31
Kubernetes architecture, 52

L
Large scale Scrum (LeSS)

area product owner (APO)/product
owner (PO), 134, 135

customer requirements, 133
framework, 133
overview, 134
roles and team structures, 135
structure, 136

Lean IT (information technology)
agile method, 124
DOWNTIME, 120
integrated system, 119
key ingredients, 123
overview, 119
principles, 121, 122
product development, 123
value stream assessment, 122

Learning process
collaboration, 209
emerging trends

benefits, 206, 207
coach/practitioner, 207
key IT trends, 207
legacy infrastructure, 207
rigid processes, 208

flat structure, 209
our learning, 205, 206
project management approach, 208

M
Microservice architecture, 51, 52
Minimum viable product (MVP), 5, 30

N
Nexus model, 137–139

O
Operations

architectures, 65–67
Cloud computing (see Cloud

computing)
container-based applications, 66
dependencies/processes, 67
deployment patterns/

automation, 53–56
digital organizations, 41
idempotency, 66
learning process, 41
maturity model, 41
microservice architecture, 51, 52
principles/benefits, 44, 45
shift, 43, 44

Kanban (cont.)

INDEX

215

shift-left testing, 56–65
traditional IT ops, 44
traditional operations, 42
virtual machines, 66

P, Q
Platform as a Service (PaaS), 47

R
Rolling updates deployment, 54, 55

S
Scaled Agile Framework (SAFe®)

agile release train (ART), 125
framework, 125
principles, 124
program increments (PIs), 125

Scrum
agile product lifecycle, 71
automation/streamlining processes, 69
backlog, 74
ceremonies, 75, 76
daily meeting, 72
daily standup meeting, 76
development project, 70
environment building/

decommissioning activities, 69
features/best practices, 83, 84
information radiators

active snapshot, 82
boards/template, 76
burndown chart, 77
burn-up chart, 78
dashboards, 78, 79
epics and user stories, 80, 81

JIRA dashboard, 83
product backlog, 81
sprint backlog, 82
velocity chart, 79, 80

infrastructure operations, 161
methodology, 70
pillars, 70, 71
planning meeting, 75
product backlog, 71
product development teams, 71
product/increment, 76
requirement breakdown, 74
retrospective, 76
roles, 73, 74
sprint backlog, 72
sprints, 74
stakeholders, 72
task execution, 72
work item, 74

Scrumban
activities, 105, 107
backlogs, 106
bucket planning, 105
ceremonies, 106
current bucket, 108
designing process, 107
DevOps/maintenance teams, 105
features/best practices, 109, 110
hybrid method, 104
infrastructure operations, 161
meaning, 105
planning meeting, 108
requirements, 107
roles, 106
schedule meetings, 108
team-based view, 107
working methods, 106
work-in-progress limits, 108

INDEX

216

Security testing, 63, 64
Service delivery manager (SDM), 86
Service level agreements (SLAs), 145
Service level objectives (SLOs), 145
Shift-left testing

A/B testing, 64, 65
BDD testing, 58
Chaos engineering/testing, 64
functional and performance

testing, 61, 62
infrastructure testing, 60, 61
security, 62, 63
smoke tests, 60, 61
static code analysis, 58, 59
testing lifecycle, 57
traditional vs. testing

methodology, 56, 57
unit testing, 58
User acceptance testing (UAT), 63

Site reliability engineering (SRE), 3, 43
automation tools, 146
balance (Dev/Ops), 153–155
CI/CD/testing tools, 152
cost of failure, 149
DevOps structures, 150
embracing risk, 144
error budgets, 148
evolution, 152
monitoring tools, 146
principles, 144
processes, 144
release engineering, 147
resilience testing, 153
roll back early/roll back often, 150
Scrum backlog, 154
service levels, 145, 146
simplicity, 148

system reliability, 144
team structure, 151
tools and technologies, 151
treat operations, 148

Smoke testing, 61, 62
Software as a Service (SaaS)

budgetary/governance controls, 51
consumption, 48
extensive planning, 50
features, 47, 48
infrastructure elements, 51
lengthy process, 48
network/storage equipment, 49
on-premises vs. cloud

computing, 49, 50
standardization, 50
technical limitations, 49

Spotify model
audio streaming services, 126
chapters/guild, 127
framework, 126
horizontal services, 132
InfraOps, 132
on-premise tribe/cloud

transformation, 131
organization structure, 131
prerequisites, 130
requirements, 128
role definitions, 129
squad, 128
Squad teams, 127
structure demands, 128
tribe, 127
trio/alliance, 127
well-tested framework, 129

Static application security
testing (SAST), 194

INDEX

217

T
Traditional infrastructure operations

disadvantages, 26
InfraOps, 27
internal/external customers, 11
ITSM (see Information Technology

Infrastructure Library (ITSM))
learning process, 11

Traditional operating model, 178

U, V
Unit testing, 58
User acceptance

testing (UAT), 63

W, X, Y, Z
White-box testing, see Unit testing
Work breakdown structure (WBS), 74

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Preface
	Chapter 1: Introduction
	Agile History: The Starting Point
	Evolving Software Teams: Drifting to New Ways of Working
	Bridging the Dev and Ops Gap
	DevOps: Complementing Agile
	Agility in Infrastructure Operations: Need of the Hour
	The Agile Manifesto: Simple Guiding Principles
	Summary

	Chapter 2: Traditional Infrastructure Operations
	ITSM Approach
	Service Strategy
	Service Design
	Service Transition
	Service Operation
	Continual Service Improvement

	Drawbacks with Traditional InfraOps Teams
	Need for Change
	Summary

	Chapter 3: Introduction to Agile and DevOps
	When to Adopt Agile?
	Agile Principles
	Agile Benefits
	Scaling Agile with DevOps
	When to Adopt DevOps?
	DevOps in the Product Lifecycle
	Summary

	Chapter 4: Factors Leading to Agile Operations
	The Shift Toward Agile
	Benefits That Come with Agility
	Cloud Computing
	Infrastructure as a Service
	Platform as a Service
	Software as a Service

	Microservice Architecture
	Deployment Patterns and Automation
	Blue-Green Deployments
	Rolling Updates
	Canary Deployments

	Shift-Left Testing
	Static Code Analysis
	Infrastructure Testing
	Smoke Testing
	Functional and Performance Testing
	Security Testing
	User Acceptance Testing
	Chaos Testing
	A/B Testing

	Changes in Architecture Impacting Operations
	Summary

	Chapter 5: Introduction to Agile Methods
	Scrum
	Adopting Scrum in IT Ops
	Getting Started with Scrum
	Scrum Roles
	Work Items
	Backlogs
	Scrum Sprints
	Sprint Ceremonies
	Information Radiators
	Best Practices in Scrum
	Summary of Scrum

	Kanban
	Kanban Roles
	Kanban Ceremonies
	Kanban Boards
	Kanban Metrics
	Getting Started with Kanban
	Best Practices in Kanban
	Summary of Kanban

	Scrumban
	Scrumban Roles
	Scrumban Ceremonies
	Getting Started with Scrumban
	Best Practices in Scrumban
	Summary of Scrumban

	Summary

	Chapter 6: Introduction to Agile Frameworks
	Agile ITSM
	IT4IT
	Lean IT
	Scaled Agile Framework® (SAFe®)
	Spotify
	LeSS
	Nexus
	Disciplined Agile Delivery (DAD)
	Site Reliability Engineering
	Balance Between Dev and Ops Work

	Summary

	Chapter 7: Using Agile for Infrastructure Operations
	The Starting Point
	Adopting the Right Agile Framework and Methodology
	Identifying the Agile Methodology
	Identifying Tools for Implementation
	Identifying the Need for Extended Integration
	Upgrading Teams on Using the Agile Approach
	Redefining Team Roles and Responsibilities
	Nurturing the Culture of “Pulling Work”
	Baselining the Initial Cycle Time and Related Metrics
	Identifying Candidates for Self-Servicing
	Creating Team Dashboards for Visibility
	Piloting and Extending the Approach
	Continuously Measuring Metrics and Replanning

	Summarizing the Transformation Plan
	Phase 1: Pilot and Accelerate
	Phase 2: Expand and Optimize
	Phase 3: Sustainment

	Summary

	Chapter 8: Moving to Agile with Infrastructure as Code
	Getting Started with Infrastructure as Code Using Scrum
	Estimating Stories
	Defining Acceptance Criteria
	An Infrastructure Build Example
	Tools Pipeline
	Infrastructure as Code Example
	Integrating IaC with Development Pipelines
	Extending the IaC Example
	Key Agile Practices While Adopting IaC Using Scrum
	Summary

	Chapter 9: Success Path
	Case Study Implementing AgileOps
	New Operating Model for Alpha
	Outcomes
	Summary

	Chapter 10: Learnings and Ways Forward
	Our Learnings
	Emerging Trends to Focus
	Next Steps
	Conclusion

	Index

